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Abstract. The shallow-water and multilayer hydrostatic models have been commonly used to ana-
lyze the problems of a sediment-laden, plane open-channel flow. The models are adequate to solve
a quasi-hydrostatic flow problem, but their accuracy deteriorates as the effects of the vertical accelera-
tion gain in significance. Herein, a higher-order numerical model for treating the problems of unsteady,
plane open-channel flow over a movable bed is proposed. In this model, the flow hydrodynamics is gov-
erned by the depth-averaged Boussinesq-type equations, and the bed morphodynamics is determined
by an Exner-type equation and additional equations describing the non-equilibrium transports of sus-
pended load and bed load. A hybrid finite-volume and finite-difference scheme was used to discretize
and solve the governing equations, yielding solutions that are in satisfactory agreement with the ex-
perimental data. Overall, the results of the proposed model for the temporal free-surface profile and
bed evolution were fairly adequate. For the two particular cases considered, however, the quality of its
results was moderately affected by the effects of the three-dimensional characteristics of the dam-break
flow and the sliding of the dike body due to sub-surface flow. The results of this investigation highlight
the importance of including a higher-order Boussinesq-type correction for refining sediment transport
computations.

Key words: turbulent flow, sediment transport, dike breach, finite-volume method, non-equilibrium
transport, morphodynamics

1. Introduction

For over a century, characterizing and predicting sediment transport in open channels
have been the primary issues of many research works. Numerically- and experimental-
ly-based methods of investigation have been utilized by such works to evaluate the
evolution of sediment load in open channels, and their results were effectively applied
to develop design guidelines for major hydraulic infrastructures. The experimental
method provides valuable insights into the basic physical processes influencing sed-
iment transport. These processes are mostly masked or disrupted in the field by the
complexities of natural fluvial systems. In addition, the temporal and spatial variations
© 2024 Institute of Hydro-Engineering of the Polish Academy of Sciences. This is an open access article licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.ibwpan.gda.pl/en/publishinghouse/ahem
https://sciendo.com/en/journal/heem


2 Y. T. Zerihun

of sediment transport make the field assessment work more difficult. A higher-order
numerical model is a cost-effective alternative approach for providing a better so-
lution to the problem of the alluvial processes involving sediment transport. It can
also be used for a comprehensive study of flow-sediment interactions in a reservoir
and estimation of the reservoir’s storage capacity depletion rate (Zerihun 2023). The
development of such a type of model is the main task of this investigation.

In recent years, several numerical models for simulating sediment transport and
the variation of channel bed level have been proposed. For flow with low sediment
concentration, the one-dimensional (1D) shallow-water equations for the hydrody-
namics of clear-water flow over a movable bed and the sediment transport equa-
tions for the morphodynamics were linked together to develop numerical models
(e.g., Capart and Young 1998, Guo and Jin 1999, El Kadi Abderrezzak and Paquier
2009, Franzini and Soares-Frazão 2018). An alternative approach, which considered
a non-equilibrium sediment transport and the effects of sediment concentration on
flow dynamics, was proposed by Cao et al (2004) and Wu and Wang (2008). Sim-
ilar to the Guo and Jin (1999) model, the model of Cao et al (2004) is limited to
analyze only suspended-load transport. Using a two-phase flow approach, Pontillo
et al (2010) presented a numerical model for simulating the dike surface erosion
due to overtopping flow. Xia et al (2010) also proposed a numerical model, which
solved the shallow-water and non-equilibrium sediment transport equations using
the finite-volume method. All these models were developed based on the restric-
tive assumption of a hydrostatic pressure distribution; hence, they are not suitable
to model rapidly-varied flows over movable beds. For such types of flows, Zerihun
(2004, p. 265) suggested the use of a coupled set of Boussinesq-type momentum and
non-equilibrium sediment transport equations.

Many investigators (e.g., Berger 1992, Steffler and Jin 1993, Zerihun and Fenton
2006, Zerihun 2021) proposed full formulations of the hydrodynamic equations of
a non-hydrostatic open-channel flow rather than resorting to the shallow-water theory.
In comparison with the two-dimensional (2D) vertical plane flows in rigid-bed chan-
nels, the simulations of such types of flows over movable beds are more challenging
due to the temporal and spatial variations of the sediment concentration and channel
bed profile. As a result, such higher-order models are seldom used to study fluvial
processes. For studying the transport of suspended sediment in non-uniform flows,
van Rijn (1986) employed a 2D model that accounts for the effects of the vertical
acceleration. Additionally, the 1D and 2D vertically averaged and moment (VAM)
models (Steffler and Jin 1993, Ghamry 1999) were coupled with a bed-load transport
model to simulate the geomorphic features of an open channel (Elgamal and Stef-
fler 2001, Vasquez et al 2011). Recently, the 1D VAM approach for sediment trans-
port (Elgamal and Steffler 2001) was enhanced to include a suspended-load transport
module (Cantero-Chinchilla et al 2019). Likewise, Marsooli and Wu (2015) extended
the three-dimensional (3D) Reynolds-averaged Navier-Stokes (RANS) equations by
integrating the flow equations with the non-equilibrium sediment transport model,
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which was originally introduced by Wu et al (2000) and Wu and Wang (2007). Al-
though a 3D model is computationally too expensive for most practical applications,
the complex features of the fluid-sediment mixture flow can be accurately mimicked
by this model. In order to reduce the computational time of large-scale problems, 2D
multilayer hydrostatic models were proposed for sediment transport studies (e.g., Wai
et al 1996, Ramirez-León et al 2005, Rowan 2019). These models relaxed the assump-
tion of constant horizontal velocities across the flow depth, so that they adequately
capture the 3D characteristics of the shallow-water flow. The outcome of this review
highlights that compared to numerical models for flow in a rigid-bed channel, very
little effort has been made so far to incorporate the effects of non-uniform velocity and
non-hydrostatic pressure distributions into the hydrodynamic and sediment transport
models.

In this study, a higher-order numerical model, which couples an open-channel
flow model with sediment transport equations, is proposed. The hydrodynamic model
of the fluid-sediment mixture flow is the depth-averaged Boussinesq-type equations,
which are developed based on the pre-assumed distributions of horizontal velocity
and non-hydrostatic pressure. Unlike the previous Boussinesq-type momentum equa-
tions (e.g., Boussinesq 1877, Zerihun 2004, 2021), the proposed equations do not
incorporate second- and third-order derivative terms of the bed profile. Consequently,
the variations of the channel bed profile due to deposition and erosion can be easily
simulated without the problem of numerical instability. For accurately determining
the evolution of the bed levels, the non-equilibrium transport equations of suspended
load and bed load are employed. It is worth emphasizing that the numerical model
proposed here deals only with the transport of non-cohesive sediment. The model’s
capabilities for simulating morphodynamic processes are tested by considering differ-
ent cases of non-uniform open-channel flows. The results are verified using available
experimental data, thus allowing us to examine the impacts of the applied higher-order
approximations for the vertical distributions of velocity and pressure. The use of the
dynamic correction for the effects of a non-hydrostatic pressure distribution may not
always be essential; it can add unnecessary complexity to the model. For a nearly
hydrostatic flow situation, the proposed model can be adjusted by simply changing
the values of few parameters, thereby reducing the computational effort and time.
In subsequent sections, the development of the governing equations and numerical
solution procedures and the validations of the numerical results are presented.

2. Mathematical Model

2.1. Hydrodynamic Equations

Figure 1 illustrates the definition sketch of a plane open-channel flow over an erodible
bed. A Cartesian coordinate system, with the x axis longitudinal, y axis transver-
sal, and the z axis vertical upward, is also shown in this figure. The transport of
the fluid-sediment mixture is numerically modeled by dividing the mixture flow into
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Fig. 1. Definition sketch of turbulent open-channel flow over a movable bed

suspended-load and bed-load layers. For a 2D vertical plane flow where flow variables
vary both in space (only in the x- and z-directions) and time, the continuity and the
RANS momentum equations (Reynolds 1895) in the conservative form can be written
as follows (Vreugdenhil 1994, pp. 15–16, Schlichting and Gersten 2017, p. 505):

∂

∂t
(ρ) +

∂

∂x
(ρu) +

∂

∂z
(ρw) = 0, (1)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p − σx

)
+
∂

∂z
(ρuw) −

∂

∂z
(τxz) = 0, (2)

∂

∂t
(ρw) +

∂

∂x
(ρuw) +

∂

∂z
(ρw2 + p − σz) −

∂

∂x
(τzx) + ρg = 0, (3)

where u and w denote the horizontal and vertical velocity components, respectively;
g is acceleration due to gravity; ρ is the density of the fluid-sediment mixture; p is
the pressure; σ and τ refer to the total normal and shear stresses, respectively; and t
is the time. In the above equations, the density may vary in the horizontal direction,
but it is assumed constant across the depth. In terms of volumetric concentration, ρ
may be expressed as

ρ = ρw
(
1 −CT

)
+ ρsCT , (4)

where ρw and ρs are the densities of water and sediment, respectively, and CT is the
vertically-averaged total sediment concentration.

The distribution of the horizontal velocity across the flow depth is approximated
by a linear relation (Zerihun 2021) as follows:

u =
q
H

(2Λ(1 − ω) + ω) , (5a)

Λ =
z − Z
η − Z

, (5b)
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where q is the unit discharge; η is the free-surface elevation; Λ is a dimensionless
vertical coordinate; z is the vertical elevation of a point in the flow field; Z is the
channel bed elevation; H is the local flow depth; and ω is the velocity distribution
parameter and tends to vary only in the x-direction. By applying Leibnitz’s rule, the
vertical integration of Equation (1) becomes

η∫
z

∂

∂t
(ρ)dz +

η∫
z

∂

∂x
(ρu)dz +

η∫
z

∂

∂z
(ρw)dz

=
∂

∂t
(ρ) +

∂

∂x

η∫
z

(ρu)dz + (ρu)zx − (ρuH)ηx + ρwH − ρw = 0.

(6)

Inserting Equation (4) into Equation (6) and applying the free-surface kinematic
boundary condition, wH = ηt + uHηx, results in the following expression for the ver-
tical velocity distribution:

w � Ht
(
1 − ω (1 − Λ) − (1 − ω)

(
1 − Λ2

))
+ Zt +

qηx

H
(2 − ω)

−
2qZx

H
((1 − ω) (1 − Λ)) −

qHx

H
((1 − Λ)ω)

−
2qHx

H

(
(1 − ω)

(
1 − Λ2

))
,

(7)

where uH and wH are the horizontal and vertical components of the velocity, respec-
tively, at the free surface. In the above equations, the subscripts x and t denote partial
differentiations with respect to the horizontal axis and time, respectively.

After decomposing the total pressure into the hydrostatic and dynamic compo-
nents, a linear distribution shape for the dynamic pressure component (Jin and Li
1996) is proposed. As noted by Zerihun (2004, 2016), such a linear-type pressure
equation can provide reasonably good results for a moderately curved open-channel
flow problem. With this, the vertical profile of the total pressure can be expressed as

p = (ρgH + pD) (1 − Λ) , (8)

where pD is the dynamic pressure at the channel bed and varies only in the x-direction.
It incorporates terms that account for the effects of a hydraulically steep slope.

In order to describe the local characteristics of the mixture flow in terms of the flow
depth and discharge, the continuity equation and the RANS momentum equations
are vertically integrated from the bed to the free surface using Equations (5a), (7)
and (8). As noted by van Rijn (1984a, 1986), the thickness of the bed-load layer (δ)
varies from 0.01H to 0.05H , which is very small compared to H . Therefore, the depth
averaging procedure is performed by ignoring the thickness of this layer and applying
the following kinematic and dynamic boundary conditions:

p(η) = 0, σ(η) = 0, τ(η) = 0, (9a)
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w(Z) = u(Z)Zx + Zt , (9b)

u(Z) = 0, (9c)

τ(Z) = τb. (9d)

Equation (9b) considers the effect of the temporal variation of the channel bed on
the vertical velocity. For a sediment-laden flow in a rectangular channel, the resulting
vertically-averaged equations can be written as

∂H
∂t

+
∂q
∂x

= −
1
ρ

(
q
∂ρ

∂x
+ H

∂ρ

∂t

)
, (10)

∂

∂t
(ρq) +

∂

∂x

(
ρq2

3H
β1 +

ρgH2

2

)
−
∂

∂x
(Hσx)

+ (ρgH + pD)Zx +
∂

∂x

(
H pD

2

)
+ τb = 0,

(11)

∂

∂t
(ρq (β4Hx + Zx) + ρH (β3Ht + Zt))

+
∂

∂x

(
ρ

(
q2

H
[
β2Hx + β1Zx

])
+ ρ

(q
2

Ht + qZt

))
−

∂

∂x
(Hτzx) − pD + τbZx = 0,

(12)

where τb is the bed shear stress; σx and τzx are the vertically-averaged normal and
tangential stresses, respectively; β1 = (ω2 − 2ω + 4)/3; β2 = (ω2 − 4ω + 6)/6; β3 =

(ω + 2)/6; and β4 = (4 − ω)/6. Unlike the previous equations introduced by Jin and Li
(1996), Equations (11) and (12) provide the nodal values of the dynamic bed pressure
as part of the solutions to the problem. Compared to those equations for single-phase
clear-water flows, the effect of sediment transport phenomenon is taken into account
by the parameters ρ(x, t) and Z(x, t). The bed shear stress is calculated from the Man-
ning equation as

τb

ρ
=

gn2q2

R1/3H2

(
1 + Z2

x

)
, (13)

where n is the Manning roughness coefficient, which is computed by the Karim (1995)
formula for a movable bed channel, and R is the hydraulic radius of a normal section.
The additional terms of the turbulent stress in Equations (11) and (12) require a tur-
bulence closure model, which will be discussed in the next section.

2.2. Model for Turbulence Effects

The simplest method to explicitly account for the effects of flow turbulence is the use
of an algebraic turbulence model based on the Boussinesq eddy-viscosity hypothesis.
This turbulence model is easy to implement and, with careful application, can provide
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practically good results for turbulent open-channel flow problems (Ferziger and Peric
2002, p. 294). Ignoring the effects of sediment suspension, the vertically-averaged
normal and tangential stresses appearing in Equations (11) and (12) are deduced from
the Boussinesq (1877) equation as follows:

Hσx =

η∫
Z

σxdz = 2ρ (νm + νx)
(
qx −

q
H

(2 − ω)ηx

)
, (14)

Hτzx =

η∫
Z

τzxdz

= ρ (νm + νz)
(
∂

∂x
(
q
[
β4Hx + Zx

]
+ H

[
β3Ht + Zt

])
+

q
H

(2 − ω)ηx

)
,

(15)

where νx and νz are the vertically-averaged kinematic eddy viscosities in the horizon-
tal and vertical directions, respectively, and νm is the molecular kinematic viscosity.
The above expressions for the turbulent stresses are added to the governing equations
as source terms; they must be accurately estimated by the numerical model. The ex-
pressions for the kinematic eddy viscosity are obtained by vertically averaging the
parabolic eddy-viscosity equation (Fischer et al 1979, pp. 106–107) and are given by

νx = αtUτH, (16a)

νz = CskUτH, (16b)

Uτ =

√
τb

ρ
, (16c)

where Cs = 1/6; k is the von Kármán constant; Uτ is the boundary shear velocity; and
αt is an empirical coefficient, having values in the range of 0.08 to 0.9 (Fischer et al
1979, p. 112). Equations (14)–(16) are numerically coupled with Equations (11) and
(12) for the complete solutions of the sediment-laden, turbulent flow problems with
curvilinear streamlines.

2.3. Sediment Transport Equations

The temporal and spatial variations of the concentration of suspended sediment in a
water column are governed by the mass-balance equation. Ignoring the longitudinal
diffusive transport, which is small compared to the vertical one, the sediment transport
equation for a 2D vertical plane flow can be written as follows:

∂c
∂t

+
∂

∂x
(uc) +

∂

∂z
((w − ws)c) −

∂

∂z

(
ξs
∂c
∂z

)
= 0, (17)
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where c is the suspended sediment concentration; ws is the settling velocity of the
turbulent suspension; and ξs is the dispersion coefficient of the sediment in the
z-direction. The vertical distribution of the suspended sediment is approximated by
the following equation:

c = c0 (1 + (1 − 2Λ + Γ1) Γ2) , (18a)

Γ1 =
(1 − ω)

3
, (18b)

Γ2 =
(1 − µ)

(Γ1(µ − 1) − 1)
, (18c)

where c0 is the flux-averaged suspended sediment concentration, and µ is a coefficient
determined from the following expression (Lin 1984):

µ = 3.25 + 0.55
(
ln

(
ws

kUτ

))
. (19)

In Equation (18a), the maximum value of µ is limited to (1 − λp)/ε, where λp is
the porosity of the bed material, and ε = c0(1 + Γ1Γ2). At the free surface, the net
vertical sediment flux is zero. This sediment boundary condition is mathematically
expressed as (

cws + ξs
∂c
∂z

)
z=η

= 0. (20)

The dispersion coefficient appearing in Equation (17) for the solid phase is dif-
ferent from the eddy-viscosity coefficient appearing in Equation (14) or (15) for the
turbulent transfer of momentum, except for the case of mixture flow with very small
particles with low density (Bechteler and Schrimpf 1984, van Rijn 1986). Addition-
ally, the distribution shape of the dispersion coefficient does not significantly affect
the settling of suspended sediment (Bechteler and Schrimpf 1988). Using this fact
and considering the sediment concentration effect, Equation (16b) is modified to give
(van Rijn 1984b)

ξs = Γ3νz = Γ3CskUτH, (21)

where Γ3 is a correction factor. As noted by van Rijn (1984b, 1986), this factor ac-
counts for the difference in the diffusion of a discrete sediment particle and a fluid
particle and also expresses the damping of turbulence by sediment particles.

By integrating Equation (17) over the flow depth with the use of Leibnitz’s rule
and application of flow and sediment boundary conditions, the vertically-averaged
sediment transport equation is developed. That is,

∂

∂t
(Hc0 (1 + Γ1Γ2)) +

∂

∂x
(qc0) + wsc0 (1 + (1 + Γ1) Γ2) −

Γ2Γ3

3
(kUτc0) = 0, (22)
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where ws is the vertically-averaged settling velocity. The evolution of the channel bed
level is also governed by the mass-balance equation for sediment routing. By account-
ing for the spatial lag effect (Daubert and Lebreton 1967, Bennett 1974), Equation
(17) is integrated over the depth to yield

∂Z
∂t

=
−1

(1 − λp)

(
∂

∂t
(Hc0 [1 + Γ1Γ2]) +

∂

∂x
(qc0) +

qbE − qb

Lb

)
, (23)

where Lb is the non-equilibrium adaptation length of bed-load transport and can be
estimated by the van Rijn (1984a) empirical relations; qb is the volumetric rate of
bed-load transport per unit width; and qbE is the bed-load transport capacity. In the
case of open-channel flows where the sediment in suspension does not significantly
change over time, Equation (23) simplifies to the Exner (1925) equation for conser-
vation of bed material.

Equation (23) requires an additional independent equation for estimating the ac-
tual bed-load discharge under non-equilibrium transport conditions. The equation is
developed here by applying the conservation equation of sediment mass to a small
control volume of the bed-load layer as well as by using the Cheng (1984) approxi-
mate expression for the net sediment flux at the layer interface. For a bed level change
dominated by the suspended-load and bed-load transports, the resulting equation is
expressed as

∂

∂t

(
qb

Us

)
+
∂qb

∂x
=

qbE − qb

Lb
, (24)

where Us is the velocity of the particle in the bed-load zone and can be estimated
by the van Rijn (1984a) equation. Equation (24) was previously presented by Wu
and Wang (2007). Inserting Equation (22) into Equation (23) results in the following
simplified expression for the channel bed evolution:

∂Z
∂t

=
−1

(1 − λp)

(
Γ2Γ3

3
(kUτc0) − wsc0 (1 + (1 + Γ1) Γ2) +

qbE − qb

Lb

)
. (25)

It is important to note that the sediment transport model described above solves
the transport equations of single-sized, non-cohesive suspended and bed sediments.

2.4. Empirical Equations for Model Closure

The vertically-averaged sediment transport model presented in the preceding section
entails an equilibrium bed-load transport equation for model closure. In this study, the
sediment load is computed by the Wu et al (2000) empirical equation. The authors’
investigation result showed that this empirical equation is more accurate than the van
Rijn (1986) equation. It typically requires a pre-determined critical shear stress, which
is computed here from the explicit empirical expressions of the curves fitted to the
Shields diagram (van Rijn 1984a). Additionally, the recalibrated version of the Ko-
mura (1963) formula (Wu and Wang 2006) is used to reckon the initial porosity of
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a sediment deposit. The settling velocity of the sediment particle in clear water is
estimated by applying the Cheng (1997) formula. Using the initial result, the effec-
tive settling velocity of a particle in sediment-laden water is computed by utilizing an
equation (Richardson and Zaki 1997) that accounts for the effect of sediment concen-
tration on settling.

3. Numerical Model

3.1. Spatial Discretization and Numerical Flux Computation

Because of the non-linear terms appearing in the governing equations, the solutions
of such equations entail a different scheme rather than the classical finite-volume
approach for the de Saint-Venant equations. In this study, a standard finite-volume
scheme is applied to the conservative form of the equations combined with a finite-
difference discretization of the source terms. Such a method is extensively used to
solve 1D and 2D higher-order equations (e.g., Soares-Frazão and Guinot 2008, Kim
et al 2009). The flow and sediment transport equations can be rewritten in a vector
form as follows:

∂U
∂t

+
∂F(U)
∂x

= S, (26)

where U, F(U), and S are vectors of the unknown conserved variables, fluxes, and
source terms, respectively, and are defined as

U =



H
qρ

qρ (β4Hx + Zx)
Hc0 (1 + Γ1Γ2)

qb

Us
Z


, (27a)

F(U) =



q

ρ

(
q2

3H
β1 +

gH2

2

)
ρq2

H
(β2Hx + β1Zx)

qc0
qb
0


, (27b)
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S =



−
1
ρ

(Hρt + qρx)

−(ρgH + pD)Zx −
∂

∂x

(
H pD

2

)
+
∂

∂x
(Hσx) − τb

pD − τbZx +
∂

∂x
(Hτzx) + Ψ2

Γ2Γ3

3
(kUτc0) − wsc0 (1 + (1 + Γ1)Γ2)

qbE − qb

Lb
−1

(1 − λp)

(
Γ2Γ3

3
(kUτc0) − wsc0 (1 + (1 + Γ1)Γ2) +

qbE − qb

Lb

)



, (27c)

Ψ2 = β3
∂

∂t
(ρHqx − qHρx) +

qρ
2

qxx +
q2

2
ρxx +

qH
2

∂

∂t
(ρx)

− qρ
∂

∂t
(Zx) − HρZtt .

(27d)

For a computational mesh of space-time grid, the finite-volume discretization of
the integral form of Equation (26) (Hirsch 2007, p. 208) can be written in the following
form using Euler’s time stepping method:

Um+1
i = Um

i −
∆t
∆x

(
F(U)m

i+1/2 − F(U)m
i−1/2

)
+ ∆tSm

i , (28)

where ∆x is the spatial step size in the x-direction, and ∆t is the time step. In the above
equation, the superscript m denotes the current time level, while F(U)i±1/2 is the nu-
merical flux exchanged through the boundaries between neighboring cells. Equation
(28) is explicitly and implicitly solved at the time levels 1 and 2 to provide additional
starting data for the proposed numerical scheme, which will be described in the next
section.

The application of the finite-volume method needs reconstructing the conserved
variables on the cell interfaces prior to computing the numerical fluxes. In this study,
these variables are reconstructed using the fourth-order monotone upstream centered
schemes for conservation laws (MUSCL-TVD), which was proposed by Yamamoto
and Daiguji (1993). In order to avoid numerical oscillations arising from discontinues
bed profile or steep bed gradient, the weighted surface-depth gradient method (Aureli
et al 2008) is adopted to determine the flow depth at the cell interfaces. Using the
reconstructed interface values, the numerical fluxes are computed by Harten-Lax-van
Leer (HLL) approximate Riemann solvers (Harten et al 1983) on a space-time grid,
as shown in Fig. 2. Following the method proposed by Toro (2009, pp. 329–331),
the required wave speeds are estimated. For the complete solutions of the unknown
conserved variables, the computational domain is extended to include ghost cells at
the upstream and downstream ends of the actual solution domain (LeVeque 2004, pp.
129–130); their values are extrapolated from interior nodes.
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Fig. 2. Computational grid in the x − t plane for a 1D numerical simulation

3.2. Time Integration

Time integration is achieved in two steps using a finite-difference predictor-corrector
scheme (Bashforth and Adams 1883). Such a higher-order numerical scheme has been
successfully applied to solve complex non-hydrostatic open-channel flow problems
(e.g., Wei and Kirby 1995, Kim et al 2009, Zerihun 2021). Using this scheme, the
conserved parameters at a time level m + 1 are computed from the mixture flow pa-
rameters at the time levels m, m − 1, and m − 2 using explicit and implicit techniques.
In the predictor step, the third-order Adams-Bashforth scheme is used to approximate
the time derivative term of Equation (26). The resulting discretized equation is

UP
i = Um

i +
∆t
12

(
23Ωm

i − 16Ωm−1
i + 5Ωm−2

i

)
, (29a)

Ωi = −
1

∆x
(
F(U)i+1/2 − F(U)i−1/2

)
+ Si, (29b)

where the superscript P stands for the predicted cell-averaged values, and i denotes the
computational point. In the step of a predictor, Ωi is determined by using the values
of the mixture flow parameters at the known time levels in Equation (29b).

In the corrector step, the time integration is performed by applying the fourth-order
Adams-Moulton scheme using the predicted and known cell-averaged values. Equa-
tion (26) is discretized by this scheme (Bashforth and Adams 1883), and the resulting
expression is given by

UC
i = Um

i +
∆t
24

(
9ΩP

i + 19Ωm
i − 5Ωm−1

i + Ωm−2
i

)
, (30)

where the superscript C refers to the cell-averaged value after the corrector step. For
this computational step, the value of ΩP

i is reckoned from the estimated values of the
conserved parameters. The time-varying parameters, appearing in Equation (27d), are
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discretized by using the third- and fourth-order accurate finite-difference equations
(Bickley 1941) for the predictor and corrector steps, respectively. It is clear that at a
time level m + 1, the equations of continuity and sediment transport are solved explic-
itly. However, the solutions of the momentum equations need an implicit technique.

3.3. Implicit Method for the Momentum Equations

For the purposes of accuracy and numerical stability, Equations (11) and (12) are
solved implicitly for the unknown conserved variables q and pD at both the predic-
tor and corrector steps. A similar approach was successfully applied to solve com-
plex open-channel flow problems (e.g., Erduran et al 2005, Soares-Frazão and Guinot
2008). Using the finite-difference approximations for the source terms, the discretized
forms of these momentum equations for the predictor step can be written as

qP
i ρ

P
i +

23∆t
12

(
pm

D,i

(Zm
i+1 − Zm

i−1
2∆x

)
+

(Hm
i+1 pm

D,i+1 − Hm
i−1 pm

D,i−1

4∆x

))
− qm

i ρ
m
i

−
23∆t
12

Ψm
1,i −

∆t
12

(
−16Ωm−1

i + 5Ωm−2
i

)
= 0,

(31a)

Ψm
1,i = −

1
∆x

(ρ [
q2

3H
β1 +

gH2

2

])m

i+1/2
−

(
ρ

[
q2

3H
β1 +

gH2

2

])m

i−1/2


− gρm

i Hm
i

(Zm
i+1 − Zm

i−1
2∆x

)
+

(Hm
i+1σ

m
x,i+1 − Hm

i−1σ
m
x,i−1

2∆x

)
− τm

b,i,

(31b)

qP
i ρ

P
i

β4

HP
i+1 − HP

i−1
2∆x

 +

ZP
i+1 − ZP

i−1
2∆x

 − 23∆t
12

pm
D,i

− qm
i ρ

m
i

(
β4

(Hm
i+1 − Hm

i−1
2∆x

)
+

(Zm
i+1 − Zm

i−1
2∆x

))
−

23∆t
12

Ψm
3,i

−
∆t
12

(
−16Ωm−1

i + 5Ωm−2
i

)
= 0,

(32a)

Ψm
3,i = −

1
∆x

(ρq2

H
[
β2Hx + β1Zx

])m

i+1/2
−

(
ρq2

H
[
β2Hx + β1Zx

])m

i−1/2


+

(Hm
i+1τ

m
zx,i+1 − Hm

i−1τ
m
zx,i−1

2∆x

)
− τm

b,i + Ψm
2,i.

(32b)

Using a similar technique as above, the implicit forms of the discretized momen-
tum equations for the corrector step become

qC
i ρ

C
i +

9∆t
24

pm
D,i

ZP
i+1 − ZP

i−1
2∆x

 +

HP
i+1 pm

D,i+1 − HP
i−1 pm

D,i−1

4∆x

 − qm
i ρ

m
i

−
9∆t
24

ΨP
1,i −

∆t
24

(
19Ωm

i − 5Ωm−1
i + Ωm−2

i

)
= 0,

(33)
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qC
i ρ

C
i

β4

HC
i+1 − HC

i−1
2∆x

 +

ZC
i+1 − ZC

i−1
2∆x

 − 9∆t
24

pm
D,i

− qm
i ρ

m
i

(
β4

(Hm
i+1 − Hm

i−1
2∆x

)
+

(Zm
i+1 − Zm

i−1
2∆x

))
−

9∆t
24

ΨP
3,i

−
∆t
24

(
19Ωm

i − 5Ωm−1
i + Ωm−2

i

)
= 0.

(34)

In the above equations, all of the fluxes and source terms are evaluated using the
known variable values at the previous time levels. This leads to a system of non-linear
equations that requires a numerical linearization procedure. Equations (31)–(34) may
be written in the following general form:

Φ1,iqm+1
i + Φ2,i+1 pm

D,i+1 + Φ3,i pm
D,i + Φ4,i−1 pm

D,i−1 = Φ5, (35)

where Φ1, Φ2, . . . , Φ5 are coefficients, which can be determined by comparing Equa-
tion (35) with the corresponding discretized equations. The resulting implicit set
of non-linear equations is first linearized by the Newton-Raphson method and then
solved by means of the lower-upper (LU) decomposition method, as was done by
Zerihun (2016, 2019).

4. Numerical Tests and Results

The applicability of the proposed model is examined by considering different types of
sediment-laden, quasi-hydrostatic and non-hydrostatic flow problems. The selected
problems have different characteristics and require different techniques to simulate
them accurately. The inflow and outflow sections of their computational domains are
located in the hydrostatic flow region, where no or negligible morphological changes
are expected to occur. For all test cases, the flow depth, discharge, and the mean sed-
iment concentrations of the suspended load and bed load were specified as boundary
conditions at the upstream end section. Besides, these boundary values were specified
at the interior nodes as initial values (t = 0 s) to commence the iteration process for
test cases with a wet-bed condition throughout the computational domain. For cases
with a combination of wet and dry beds, a flow depth of 1 mm was specified as an
initial value in the dry-bed zone to avoid undesirable numerical instability arising
from infinite values of the fluxes due to a nil value of the conserved variable.

For selected parameters, a sensitivity analysis was performed prior to the tasks
of model verification. The results demonstrate that the numerical solutions are the
least sensitive to the non-equilibrium adaptation length of bed-load transport (Lb)
and the empirical coefficients Γ3 and µ, but more sensitive to the coefficient of rough-
ness and spatial step size. Hence, the spatial step size was varied from 7.5 to 500
mm, depending on the nature of the flow problems. For the quasi-uniform flow cases,
a coarser step size was used without any stability and accuracy issues. Additionally,
the computational time step is limited by a numerical stability criterion such as the
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Courant-Friedrichs-Lewy (CFL) condition. A CFL value between 0.1 and 0.45 was
employed to obtain stable and reliable results. Therefore, the numerical results pre-
sented hereafter are independent of the sizes of the computational steps.

4.1. Test Case 1: Suspended Sediment Discharge in Prismatic Channels

A large set of available experimental data (Guy et al 1966, Montes 1973) was used to
calibrate and verify the results of the model. These experiments were conducted in the
laboratory flumes to study the hydraulic characteristics of the fluid-sediment mixture
for a wide range of flow conditions. The velocity profiles and the suspended sedi-
ment concentration at the downstream end section were measured. Fig. 3a shows the
vertical profile of the horizontal velocity. In the suspended-load layer, the computed
non-dimensional horizontal velocity profile, ϑ(= u/U, where U is the depth-averaged
horizontal velocity), showed a fairly good correlation with the measured data, with
a correlation coefficient of 0.8. Near the channel bed (Λ < 0.1), the predicted veloc-
ity profile appreciably deviated from the measured data. The measured velocity data
reported by Guy et al (1966) might have some irregularities due to the effects of flow
turbulence. Since an empirical equation is used to estimate the bed load, this deviation
does not significantly affect the quality of the model results.

Fig. 3. (a) Horizontal velocity distribution; and (b) comparison of the com-
puted result, qs,C , with the measured suspended sediment discharge, qs,E (data

from Guy et al (1966)). The mean sediment diameter is indicated by ϕ

Figure 3b shows the comparison of the simulated suspended sediment discharge
at the downstream end with the experimental data reported by Guy et al (1966). The
selected data include the average sediment discharges from the experiments conducted
in sand bed flumes for flow between 44 and 643 L/s. These data were collected in a re-
circulating flume 2.44 m wide, 610 mm deep, and 45.72 m long. The mean sediment
diameter of the sand varied from 0.19 to 0.93 mm. As shown in the figure, most of the
computed results fell within the region of ±10%. Only 15% of the computed values
deviated from the measured sediment discharges by more than 10%.
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4.2. Test Case 2: Sediment Transport in a Dredged Trench

The migration of dredged trenches with different side slopes were experimentally
studied by the Delft Hydraulics Laboratory [DHL] (1980). The experiments, which
were conducted in trenches with initial side slopes 5.7 and 18.4◦ and inflow discharge
200 L/s/m (Tests T1 and T3), were selected for verifying the numerical results. These
experiments were carried out in a laboratory flume with a bed made of fine sand
(median diameter ϕ50 = 0.16 mm). The flume was 500 mm wide, 700 mm deep, and
30 m long. Sand with similar characteristics to the bed material was supplied at a total
loading rate of 0.04 kg/s/m at the upstream end section for maintaining equilibrium
conditions at this section. The bed level changes due to deposition and erosion were
measured at different times by means of an automatic sounding system.

The computed bed profiles at 7.5 and 15 h are presented in Fig. 4. In this figure,
the variation of the normalized bed elevation, ZN (= Z/H0, where H0 is the flow depth
at the inflow section), with the normalized horizontal distance, X(= x/H0), is shown.
For both cases, the numerical model satisfactorily mimics the deposition and erosion
processes in the trench. In the acceleration zone (13 ≤ X < 19), however, some minor
discrepancy between the computed and measured erosion levels can be seen at a com-
putational time of 15 h. In general, the elevations of the bed profiles are predicted
reasonably well with a mean absolute relative error of 8.4%.

Fig. 4. Bed profiles due to siltation and erosion of dredged trenches with
different initial side slopes: (a) Test T3 (side slope = 5.7◦); and (b) Test T1
(side slope = 18.4◦). The computed results are shown in solid lines with the

colors of the corresponding experimental data (DHL 1980)

4.3. Test Case 3: Subcritical Flow over a Stepped Channel Bed

Tingsanchali and Supharatid (1996) conducted a series of experiments on subcritical
flows over a movable flume bed made of a nearly uniform sand (ϕ50 = 0.90 mm). The
flume had a width of 600 mm and a test section with a length of 12 m. A test run with
a constant inflow discharge of 54 L/s and no initial sediment loading was selected to
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validate the results of the model. For this run, the initial bed profile had a uniform
thickness of 200 mm for a length of 6 m. This thickness was gradually reduced to
100 mm at the rate of 10% and then remained constant. The free-surface and bed
elevations along the centerline of the flume were measured using an automatic profile
recorder.

Figure 5 compares the normalized free-surface elevation, ηN (= η/H0), and bed
level with the experimental data. As can be seen, the numerical model accurately
predicted the free-surface profile. For this subcritical flow situation, the effect of the
streamline curvature is insignificant, except in the flow region near the stepped-bed
of the channel. Upstream of the initial slanted face of the bed (X ≤ 35), the elevation
of the modified bed profile due to erosion was slightly overestimated by the model.
In the deposition region, the computed bed level agreed reasonably well with the
experimental data.

Fig. 5. Comparison of the results of the model with the measured data for
free-surface and bed profiles. The computed results are shown in solid lines

with the colors of the corresponding experimental data

4.4. Test Case 4: Dike Erosion due to an Overtopping Flow

4.4.1. Schmocker’s (2011) Experiment

A series of experiments on dike erosion due to an overtopping flow was carried out
by Schmocker (2011). These experiments were performed in a straight rectangular
8 m long, 400 mm wide, and 700 mm deep flume. The results of Test 52, which was
conducted using a trapezoidal-shaped dike made of coarse sand with a mean sediment
size of 2 mm, were selected to validate the model results. The dike had a crest length
of 100 mm and a symmetrical face slope of 26.57◦. During the experiment, a constant
inflow discharge of 8 L/s was sustained. The seepage through the dike was controlled
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by providing upstream drainage underneath the dike. The free-surface and bed profiles
at various times were recorded using a 30 Hz CCD camera.

Fig. 6. Temporal change in free-surface and bed elevations for a dike with
upstream bottom drainage. The computed results are shown in solid lines with

the colors of the corresponding experimental data of Schmocker (2011)

Figure 6 shows the non-dimensional elevations of the free surface, ηD(= η/HD,
where HD is the initial height of the dike), and bed, ZD(= Z/HD), as a function of
XD(= x/LD, where LD is the initial bottom length of the dike) for various dike breach-
ing phases. The starting time of the overtopping process (t = 0 s) was the time when
the level of the free surface in the reservoir reached the upstream edge of the crest.
As depicted in the figure, the processes of plane dike breaching at various times were
satisfactorily simulated by the model. However, the volume of the transported and
deposited material near the toe of the dike was not accurately predicted. As a result,
the elevations of the free surface and the bed were underestimated in the downstream
flow region. This discrepancy is attributed to the effect of pore-water pressure, which
was not successfully reduced by the bottom drainage especially at the later stage of the
breaching process (Liang et al 2020). It is obvious that high pore-water pressure trig-
gers instability of the downstream-face slope (Pickert et al 2011) and hence sliding of
the dike body. Such complex processes cannot be handled by the proposed numerical
model.
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4.4.2. Tabrizi’s (2016) Experiment

The results of the model were also compared with the experimental data of Tabrizi
(2016). Similar to Schmocker (2011), he conducted experiments to examine the sur-
face erosion process of a trapezoidal-shaped dike, which was built of non-compacted,
uniform sand material with a mean diameter of 0.55 mm. This 150 mm high dike had
upstream- and downstream-face slopes of 26.57◦ and was tested in a rectangular flume
200 mm wide, 250 mm deep, and 6.1 m long for a constant inflow discharge of 0.5
L/s. The seepage through the dike was controlled by placing a thin clay layer on its
upstream face (see Fig. 7a). The free-surface and bed profiles at various times were
recorded using a high definition video camera.

Fig. 7. Temporal change in free-surface and bed elevations for a dike with
upstream bottom drainage. The computed results are shown in solid lines with

the colors of the corresponding experimental data of Schmocker (2011)

Figure 7 shows a comparison between the measured and the computed temporal
change in free-surface and bed elevations. In the upstream flow region (XD < 0.7),
the model adequately predicted the levels of the free surface and bed at all stages of
breaching. Similar to the previous test, however, it underestimated the levels of the
deposited material in the vicinity of the dike toe, as shown in Fig. 7b,c. At the later
stages of breaching, the predicted levels of deposition fairly agreed with the measure-
ments. During these stages, the dike slopes were rapidly flattened (see Figs. 6d and
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7c,d). Consequently, the effect of non-hydrostatic pressure became almost insignifi-
cant. Only for the case of curvilinear transcritical overflows, such a dynamic pressure
effect can play a dominant role (Zerihun and Fenton 2007, Zerihun 2020). Consider-
ing the complicated aspects of the dike erosion problem, the overall characteristics of
the 2D dike breaching were reasonably reproduced.

Fig. 8. An outflow hydrograph corresponding to a 2D breaching of a dike

The variation of the outflow discharge over time is depicted in Fig. 8. The general
trend of the temporal change of the outflow discharge was accurately portrayed by the
model. It can be seen from this figure that at the later stages of breaching, the flow
approached a quasi-steady flow condition. The peak discharge and the time to peak
were predicted with errors of 8.7 and 9.3%, respectively. The results of both tests con-
firmed that in the region, where the flow regime changes from a sub- to a super-critical
state, the model satisfactorily simulates the process of plane dike erosion irrespective
of the degree of the streamline curvatures. As was the case for a shallow-water mod-
eling approach (see, e.g., Mizutani et al 2013), its performance in the supercritical
flow region immediately downstream of the dike toe can be improved by accounting
for the effects of sub-surface flow, thereby simultaneously solving the problems of
erosion and infiltration.

4.5. Test Case 5: Dam-Break Flow over a Movable Bed

The performance of the numerical model was further evaluated by simulating a dam-
break flow over a movable bed. The laboratory experiment of Fraccarollo and Capart
(2002) was selected to validate the numerical results. They performed the experiment
in a horizontal prismatic flume of 100 mm wide, 350 mm deep, and 2.5 m long. The
flume bed was covered by light cylindrical polyvinyl chloride (PVC) pellets with an
equivalent spherical diameter of 3.5 mm and a specific gravity of 1.54. The idealized
dam was represented by a vertical sluice gate, which was lowered down to the flume
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bed (see Fig. 9a). The initial water depth in the upstream reservoir was 100 mm, and
the test section downstream of the gate was initially dry. The dam-break flow at various
times was recorded using a fast CCD camera, operating at the rate of 200 frames per
second.

Fig. 9. (a) Schematic diagram of the initial stage of the dam break. In (b),
(c) and (d), the simulated free-surface and bed profiles at various dam-break
stages are compared with the measured data. The computed results are shown
in solid lines with the colors of the corresponding experimental data of Frac-

carollo and Capart (2002)

The simulated free-surface and bed profiles at various dam-break stages are
shown in Fig. 9b–d. The predictions of the model for the scour pattern and partial
re-deposition of bed material were fairly agreed with the measurements. In the flow
region behind the wavefront (X ≥ 0), the model slightly underestimated the bed lev-
els. Upstream of this region, the bed level was overestimated at the earlier dam-break
time of 0.5 s. As can be seen, the trend of the dam-break wave was fairly simulated
by the model, including the location of the wavefront. Upstream and downstream of
the scour hole, the elevations of the free surface were predicted reasonably well by
the model. In the flow region around the scour hole, however, the free-surface eleva-
tion of the hydraulic jump was underestimated. The main reasons for the discrepancy
between the results of the model and the experimental data are the 3D characteris-
tics of the hydraulic jump near the initial gate site and the debris flow behavior (see,
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e.g., Suwa 1988, Takahashi 2014, pp. 29–31) of the highly concentrated mixture flow
near the wavefront. Such complex characteristics of the fluid-granular flow cannot be
accurately simulated by the proposed model. Overall, the effect of the vertical accel-
eration on the characteristics of the dam-break flow was successfully accounted for
by the model’s higher-order Boussinesq-type correction.

5. Summary and Conclusions

In this study, a higher-order numerical model for analyzing the problems of non-
cohesive sediment transport in open channels was proposed. The governing equations
of the model encompass the depth-averaged Boussinesq-type equations for hydro-
dynamics, an Exner-type equation for morphodynamics, one-dimensional transport
equations for the suspended and bed sediments, and a set of empirical equations for
an equilibrium bed-load transport and estimations of the various parameters. A hybrid
finite-volume and finite-difference scheme was employed to discretize and solve the
non-linear governing equations. The ability of the model to successfully predict the
temporal variations of the bed elevation and sediment transport rate was examined by
considering quasi-hydrostatic and non-hydrostatic open-channel flows over movable
beds, and its results were compared with the experimental data available.

The following conclusions are drawn from this study:
1. For the case of migration of dredged trenches, the numerical model satisfactorily

portrayed the deposition and erosion processes with a minor discrepancy between
the computed and measured erosion levels in the acceleration zone (13 ≤ X < 19).
A comparable model performance result was also obtained for the test case of
subcritical flow over a movable stepped channel bed. The overall results attested
the capability of the model for simulating the salient features of a sediment-laden,
weakly non-hydrostatic open-channel flow.

2. The proposed model was also tested for a sediment transport situation in open
channels where bed load is more important such as plane dike erosion. The results
of the tests reveal that the model can adequately simulate the outflow discharge
and the process of dike erosion. However, the sliding of the dike body caused
by the sub-surface flow affects the quality of the model results, especially in the
supercritical flow region immediately downstream of the dike toe. To improve the
performance of the current model, the effects of sub-surface flow on dike breach-
ing must be accounted for by coupling this model with a seepage flow and slope
stability models. This issue will be addressed in depth in a subsequent publication.

3. For the dam-break flow, the trend of the dam-break wave was fairly simulated by
the model, including the location of the wavefront. In spite of the 3D character-
istics of the flow, the elevations of the free surface in the flow regions upstream
and downstream of the scour hole were predicted reasonably well by the model.
Furthermore, the undular characteristics of the free-surface profile were success-
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fully reproduced, demonstrating the model’s capability for handling the effect of
the vertical acceleration on dam-break flow.
The results of this investigation reveal that the proposed model is a promising

morphodynamic tool for analyzing real-life problems related to flow-induced sedi-
ment transport processes in open channels. Its results may be applied to develop a risk
assessment and management strategy for a riverine infrastructure.
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