PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phosphoric Acid Treated Oil Palm Trunk Waste for Removal of Malachite Green – Kinetics and Isotherm Investigations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dyeing operations in industries like textiles, paper, and leather are significant contributors to environmental pollution due to the release of harmful dyes. The current study aimed to examine the use of oil palm trunk (OPT) treated with phosphoric acid (PAOPT) to remove malachite green (MG) dye from aqueous solutions through batch adsorption experiments. Spectroscopic and quantitative tests were used to characterise the PAOPT adsorbent. The effects of initial solution pH (3–6), PAOPT dosage (0.02–0.10 g), and adsorption duration (0–120 min) were studied. The adsorption rate of MG followed a pseudo-second-order kinetic model with a high regression correlation (R2 ) and a low chi-squared value (χ2 ). The single-layer adsorption of PAOPT for MG was determined to be 217.23 mg/g at a pH of 6, 0.02 g PAOPT mass, 20 min contact time, and 298 K. The percentage of MG desorption from the loaded PAOPT using distilled water and 0.01 M HCl was 0% and 19.65%, respectively, indicating the possible involvement of electrostatic interactions between the dye and PAOPT, π-π interaction and hydrogen bonding. The experimental results of the current study and the assessment with other stated adsorbents indicate that PAOPT could be used as a cost-effective alternative adsorbent for MG removal.
Słowa kluczowe
Twórcy
  • Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400, Jengka, Pahang, Malaysia
  • Department of Chemistry, College of Science, Ibb University, Ibb, Yemen
  • School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
  • Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400, Jengka, Pahang, Malaysia
Bibliografia
  • 1. Ab Aziz, N.A.H., Md Ali, U.F., Ahmad, A.A., Mohamed Dzahir, M.I.H., Khamidun, M.H. and Abdullah, M. F. 2023. Non-functionalised oil palm wastederived reduced graphene oxide for methylene blue removal: Isotherm, kinetics, thermodynamics, and mass transfer mechanism. Arabian Journal of Chemistry, 16(1), 104387. https://doi.org/10.1016/j.arabjc.2022.104387
  • 2. Abdul Khalil, H.P.S., Siti Alwani, M., Ridzuan, R., Kamarudin, H., Khairul, A. 2008. Chemical Composition, Morphological Characteristics, and Cell Wall Structure of Malaysian Oil Palm Fibers. Polymer-Plastics Technology and Engineering, 47, 273–280. http://doi.10.1080/03602550701866840
  • 3. Ahmad Khan, F., Dar, B.A., Farooqui, M. 2023. Characterisation and adsorption of malachite green dye from aqueous solution onto Salix alba L. (Willow tree) leaves powder and its respective biochar. International Journal of Phytoremediation, 25(5), 646–657. https://doi.org/10.1080/15226514.2022.2098909
  • 4. Freundlich, H. 1926. Colloid and Capillary Chemistry. Methuen, Lon.
  • 5. Gebreslassie, Y.T. 2020. Equilibrium, Kinetics, and Thermodynamic Studies of Malachite Green Adsorption onto Fig (Ficus cartia) Leaves. Journal of Analytical Methods in Chemistry, 2020, https://doi.org/7384675.10.1155/2020/7384675
  • 6. Hameed, B.H., El-Khaiary, M.I. 2008. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. Journal of Hazardous Materials, 154(1), 237–244. https://doi.org/10.1016/j.jhazmat.2007.10.017
  • 7. Harith Zafrul Fazry, A., Sapawe, N., Izhar Fahimi Abdul Aziz, A., Zafri Haiqal Zainudin, M., Hakimi Haizal Hafiz, M., Aiman Farhan Idris, M., Farhan Hanafi, M., Farhan Mohd Fozi, M. 2018. Microwave induced HNO2 and H3PO4 activation of oil palm frond (OPF) for removal of malachite green. Materials Today: Proceedings, 5, (10, Part 2), 22143–22147. https://doi.org/10.1016/j.matpr.2018.07.082
  • 8. Haroon, M., Ullah, R., Ullah, S., Mehmood, S., Khan, N., Haq, F., Uddin, W., Ullah, N., Ali, Z., Majeed, H. 2021. Efficient adsorption of Malachite Green from water by activated carbon of Date trunk fiber. Journal of Applied and Emerging Sciences, 11(1), 57–62.
  • 9. Hasan, R., Ahliyasah, N.A.F., Chong, C.C., Jusoh, R., Setiabudi, H.D. 2019. Eggshell treated oil palm fronds (EG-OPF) as low-cost adsorbent for methylene blue removal. Bulletin of Chemical Reaction Engineering & Catalysis, 14(1), 158–164.
  • 10. Ho, Y.-S., McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochem, 34(5), 451–465.
  • 11. Husien, S., El-taweel, R.M., Salim, A.I., Fahim, I.S., Said, L.A., Radwan, A.G. 2022. Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modelling. Current Research in Green and Sustainable Chemistry, 5, 100325. https://doi.org/10.1016/j.crgsc.2022.100325
  • 12.Jabar, J.M., Odusote, Y.A. 2021. Utilisation of prepared activated biochar from water lily (Nymphaea lotus) stem for adsorption of malachite green dye from aqueous solution. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01399-9
  • 13.Jasri, K., Abdulhameed, A.S., Jawad, A.H., Alothman, Z.A., Yousef, T.A., Al Duaij, O.K. 2023. Mesoporous activated carbon produced from mixed wastes of oil palm frond and palm kernel shell using microwave radiation-assisted K2CO3 activation for methylene blue dye removal: Optimisation by response surface methodology. Diamond and Related Materials, 131, 109581. https://doi.org/10.1016/j.diamond.2022.109581
  • 14. Khalid, K., Hanafiah, M.A.K.M., Al-Amrani, W.A., Nik Malek, N.A.N., Fatinathan, S. 2022. Comparative Adsorption of Methylene Blue Dye on Hexane-Washed and Xanthated Spent Grated Coconut (Cocos nucifera L.): Isotherms, Thermodynamics, and Mechanisms. Journal of Ecological Engineering, 23(3), 1-11. https://doi.org/10.12911/22998993/145675.
  • 15. Krishna Murthy, T.P., Gowrishankar, B.S., Chandra Prabha, M.N., Kruthi, M., Hari Krishna, R. 2019. Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: Equilibrium, kinetics and thermodynamic studies. Microchemical Journal, 146, 192–201. https://doi.org/10.1016/j.microc.2018.12.067.
  • 16. Lagergren, S.K. 1898. About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingar, 24, 1–39.
  • 17. Lan, D., Zhu, H., Zhang, J., Li, S., Chen, Q., Wang, C., Wu, T., Xu, M. 2022. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives. Chemosphere, 293, 133464. https://doi.org/10.1016/j.chemosphere.2021.133464
  • 18. Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361–1403.
  • 19. Lawal, A.A., Hassan, M.A., Ahmad Farid, M.A., Yasim-Anuar, T.A.T., Mohd Yusoff, M.Z., Zakaria, M.R., Roslan, A.M., Mokhtar, M.N., Shirai, Y. 2020. One-step steam pyrolysis for the production of mesoporous biochar from oil palm frond to effectively remove phenol in facultatively treated palm oil mill effluent. Environmental Technology & Innovation, 18, 100730. https://doi.org/10.1016/j.eti.2020.100730
  • 20. Lim, A., Chew, J.J., Ismadji, S., Khaerudini, D.S., Darsono, N., Sunarso, J. 2022. Kinetic and equilibrium adsorption study of anionic dyes using oil palm trunk-derived activated carbon. Materials Today: Proceedings, 64, 1627–1638. https://doi.org/10.1016/j.matpr.2022.04.918
  • 21. Miranda, F.F., Putri, A.S., Mustikaningrum, M., Yuliansyah, A.T. 2021. Preparation and characterisation of nano crystal cellulose from oil palm trunk for adsorption of methylene blue. AIP Conference Proceedings, AIP Publishing LLC.
  • 22. Mustikaningrum, M., Cahyono, R.B., Yuliansyah, A.T. 2021. Effect of NaOH concentration in alkaline treatment process for producing nano crystal cellulose-based biosorbent for methylene blue. IOP Conference Series: Materials Science and Engineering, IOP Publishing.
  • 23. N’diaye, AD., Kankou, M.S.A., Hammouti, B., Nandiyanto, A.B.D., Al Husaeni, D.F. 2022. A review of biomaterial as an adsorbent: From the bibliometric literature review, the definition of dyes and adsorbent, the adsorption phenomena and isotherm models, factors affecting the adsorption process, to the use of typha species waste as adsorbent. Communications in Science and Technology, 7(2), 140–153.
  • 24. Ngaha, M.C.D., Njanja, E., Doungmo, G., Tamo Kamdem, A., Tonle, I.K. 2019. Indigo Carmine and 2,6-Dichlorophenolindophenol Removal Using Cetyltrimethylammonium Bromide-Modified Palm Oil Fiber: Adsorption Isotherms and Mass Transfer Kinetics. International Journal of Biomaterials, 2019, 6862825. https://doi.org/10.1155/2019/6862825.
  • 25. Pereira, L., Alves, M. 2012. Chapter 4: Dyes-environmental impact and remediation. Environmental protection strategies for sustainable development, strategies for sustainability. A. Malik and E. Grohmann, Springer Science+Business Media BV: 111–162.
  • 26. Xu, Y., Zhang, J., Jia, G., Ji, D., Ding, Y., Zhao, P. 2023. Evaluating malachite green removal from aqueous solution by hydroxyl enhanced hydrochar and biomass. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03647-y
  • 27. Zaid, M., Jamion, N., Omar, Q., Yong, S. 2017. Sorption of malachite green (MG) by cassava stem biochar (CSB) kinetic and isotherm studies. Journal of Fundamental and Applied Sciences, 9(6S), 273–287.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18a964a1-61ad-4775-b0ba-50ade9d2b1dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.