Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Additively manufactured components often show insufficient component quality due to the formation of different defects. Defects such as porosity result in material inhomogeneity and structural integrity issues. The integration of in-process monitoring in machining processes facilitates the identification of inhomogeneity characteristics in manufacturing, which is crucial for process adaptation. The incorporation of artificial defects in components has the potential to mimic and study the behaviour of real-world defects in a more controlled way. This study highlights the potential benefits of cutting force and vibration monitoring during machining operations with the goal of providing insights into the machining behaviours and the effects of the artificially introduced defects on the process. Detection of anomalies relies on identifying changes in force profiles or vibration patterns that might indicate the interaction between the tool and the defect. Machine learning algorithms were used to process and interpret the collected data. The algorithms are trained to recognize patterns, anomalies, or deviations from expected behaviours, which can aid in evaluating the effect of detected defects on the machining process and the resultant component quality. The main objective of this study is to contribute to enhancing quality control of machining processes for inhomogeneous materials.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
83--93
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Institute for Machine Tools, University of Stuttgart, Germany
autor
- Institute for Machine Tools, University of Stuttgart, Germany
autor
- Institute for Machine Tools, University of Stuttgart, Germany
autor
- Institute for Machine Tools, University of Stuttgart, Germany
Bibliografia
- [1] Moehring H.C., Maucher C., Becker D., Stehle T., Eisseler R., 2023, The Additive-Subtractive Process Chain - A Review, Journal of Machine Engineering, 23/1, 5–35, https://doi.org/ doi:10.36897/jme/162041.
- [2] BIEG F., SCHEIDER D., KLEDWIG C., MAUCHER C., MÖHRING H.-C., REISACHER M., 2023, Development of A Laser Preheating Concept for Directed Energy Deposition, Journal of Laser Applications, 35/4, 042052, https://doi.org/ doi: 10.2351/7.0001124.
- [3] KIM F., H., MOYLAN S.P., 2018, Literature Review of Metal Additive Manufacturing Defects, Gaithersburg, MD, https://doi.org/ doi:10.6028/Nist.Ams.100-16. Accessed: Jan. 18, 2024.
- [4] GIBSON I., ROSEN D., STUCKER B., KHORASANI M., 2021, Additive Manufacturing Technologies, Cham: Springer International Publishing.
- [5] BRENNAN M.C., KEIST J.S., PALMER T.A., 2021, Defects in Metal Additive Manufacturing Processes, Journal of Materials Engineering and Performance, 30/7, 4808–4818, https://doi.org/10.1007/S11665-021-05919-6.
- [6] NG G. K.L., JARFORS A.E. W., BI G., ZHENG H.Y., 2009, Porosity Formation and Gas Bubble Retention in Laser Metal Deposition, Appl. Phys. A, 97/3, 641–649, https://doi.org/10.1007/S00339-009-5266-3.
- [7] GOUARIR A., MARTINEZ-ARELLANO G., TERRAZAS G., BENARDOS P., RATCHEV S., 2018, In-Process Tool Wear Prediction System Based on Machine Learning Techniques and Force Analysis, Procedia CIRP, 77, 501–504, https://doi.org/10.1016/J.PROCIR.2018.08.253.
- [8] TABASZEWSKI M., TWARDOWSKI P., WICIAK-PIKUŁA M., ZNOJKIEWICZ N., FELUSIAK-CZYRYCA A., CZYZYCKI J.,2022, Machine Learning Approaches For Monitoring Of Tool Wear During Grey Cast Iron Turning, Materials (Basel, Switzerland) 15/12, https://doi.org/10.3390/MA15124359.
- [9] CHARALAMPOUS P.,2021, Prediction of Cutting Forces in Milling Using Machine Learning Algorithms and Finite Element Analysis, Journal of Materials Engineering and Performance, 30/3, 2002–2013, https://doi.org/10.1007/S11665-021-05507-8.
- [10] COOPER C., ZHANG J., GAO R.X., WANG P., RAGAI I., 2020, Anomaly Detection In Milling Tools Using Acoustic Signals And Generative Adversarial Networks, Procedia Manufacturing, 48, 372–378, https://doi.org/10.1016/J.PROMFG.2020.05.059.
- [11] MADHUSUDANA C.K., BUDATI S., GANGADHAR N., KUMAR H., NARENDRANATH S., 2016, Fault Diagnosis Studies of Face Milling Cutter Using Machine Learning Approach, Journal of Low Frequency Noise, Vibration and Active Control, 35/2, 128–138, https://doi.org/10.1177/0263092316644090.
- [12] LI X., TSO S.K., WANG J., 2000, Real-Time Tool Condition Monitoring Using Wavelet Transforms and Fuzzy Techniques, Systems, Man and Cybernetics, Part C, 30/3, 352-357.
- [13] PENG B., BERGS T., SCHRAKNEPPER D., KLOCKE F., DÖBBELER B., 2019, A Hybrid Approach Using Machine Learning to Predict The Cutting Forces Under Consideration of the Tool Wear, PROCEDIA CIRP, 82, 302–307, https://doi.org/10.1016/J.PROCIR.2019.04.031.
- [14] SCHLAGENHAUF T., WOLF J., PUCHTA A., 2022, Multivariate Time Series Dataset of Milling 16MnCr5 for Anomaly Detection, https://doi.org/10.5445/IR/1000151546.
- [15] GAUDER D., BIEHLER M., GÖLZ J., SCHULZE V., LANZA G., 2022, In-Process Acoustic Pore Detection in Milling Using Deep Learning, CIRP Journal of Manufacturing Science and Technology, 37, 125–133, https://doi.org/10.1016/J.CIRPJ.2022.01.008.
- [16] PFIRRMANN D., BAUMANN J., KREBS E., BIERMANN D., WIEDERKEHR P., 2021, Material Defects Detection Based on In-Process Measurements in Milling of Ti6246 Alloy, PROCEDIA CIRP, 99, 165–170, https://doi.org/10.1016/J.PROCIR.2021.03.023.
- [17] AXINTE D.A., GINDY N., FOX K., UNANUE I., Process Monitoring to Assist the Workpiece Surface Quality in Machining, International Journal of Machine Tools and Manufacture, 44/10, 1091–1108, https://doi.org/10.1016/j.ijmachtools.2004.02.020
- [18] HOSNA A., MERRY E., GYALMO J., ALOM Z., AUNG Z., AZIM M.A., 2022, Transfer Learning: A Friendly Introduction, Journal of Big Data,. https://doi.org/10.1186/s40537-022-00652-w.
- [19] HINTON G.E. SALAKHUTDINOV R.R., 2006, Reducing the Dimensionality of Data with Neural Networks, Science (New York, N.Y.), 313/5786, 504–507, https://doi.org/10.1126/SCIENCE.1127647.
- [20] LI P., PEI Y., LI J., 2023, A Comprehensive Survey on Design And Application of Autoencoder in Deep Learning, Applied Soft Computing, 138, 110176, https://doi.org/10.1016/J.ASOC.2023.110176.
- [21] PEREIRA P.J., COELHO G., RIBEIRO A., MATOS L.M., NUNES E.C., FERREIRA A., PILASTRI A., CORTEZ P., 2021, Using Deep Autoencoders for In-Vehicle Audio Anomaly Detection, Procedia Computer Science, 192, 298–307, https://doi.org/10.1016/J.PROCS.2021.08.031.
- [22] OU J., LI H., HUANG G., ZHOU Q., 2020, A Novel Order Analysis and Stacked Sparse Auto-Encoder Feature Learning Method for Milling Tool Wear Condition Monitoring, Sensors, 20/10, 2078, https://doi.org/10.3390/S20102878.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18a71155-e1ce-4e31-9de4-4b9457d57fbe