PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seasonal analysis of long-term (1970-2020) rainfall variability using clustering and wavelet transform approach in the Mahi River Basin, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding the trend of seasonal rainfall in the context of climate change is crucial for the maintenance of regional water resources management. The present study examines the seasonal rainfall trend in the Mahi River basin, India by using the wavelet transform and clustering method. Daily gridded rainfall data (0.25° X 0.25° spatial resolution) for 51 grids from 1970 to 2020 have been taken from India Meteorological Department (IMD). The monthly, seasonal, and annual statistic has been analyzed for 51 years. We have also plotted the relationship between precipitation trend-elevation. After that, homogeneous precipitation regions are delineated with hierarchical clustering analysis. Results reveal that seasonal precipitation over the basin clusters into 4 subregions for monsoon and 3 subregions for winter, pre-monsoon, and post-monsoon seasons. After the regionalization of the subregions, the periodicity and the inter-seasonal relationship were analyzed using continuous wavelet transform (CWT). In addition, it was clear that the cross-correlation between pre-monsoon and monsoon seasons had a significant periodic change in the last 30 years over the basin. The basin is located adjacent to the Arabian sea, which makes the basin more sensitive to a natural event like ENSO, it can cause changes in ocean temperatures and atmospheric circulation patterns that affect precipitation patterns during the study period. It is expected that some natural phenomena like monsoon variability, low-level jet streams, and many more also have an impact on the rainfall patterns of the basin. Thus, the understanding of seasonal precipitation variation provides a practical reference for water resources management, agricultural planning, and a forecast of precipitation in different regions and river basins of India which may give a better climate change indication.
Czasopismo
Rocznik
Strony
1879--1894
Opis fizyczny
Bibliogr. 80 poz.
Twórcy
  • Department of Atmospheric Science, School of Earth Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
  • Department of Atmospheric Science, School of Earth Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
  • Department of Atmospheric Science, School of Earth Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
  • Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, South Korea
Bibliografia
  • 1. Abbass K, Qasim MZ, Song H, Murshed M, Mahmood H, Younis I (2022) A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29:1-21
  • 2. Abdourahamane ZS, Acar R (2018) Analysis of meteorological drought variability in Niger and its connection with climate indices. Hydrol Sci J 63(8):1203-1218
  • 3. Addison PS (2017) The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. CRC Press, Boca Raton
  • 4. Addison PS (2018) Introduction to redundancy rules: the continuous wavelet transform comes of age. Philos Trans R Soc A Math Phys Eng Sci 376(2126):20170258
  • 5. Alam MS, Paul S (2020) A comparative analysis of clustering algorithms to identify the homogeneous rainfall gauge stations of Bangladesh. J Appl Stat 47(8):1460-1481
  • 6. Alemu ZA, Dioha MO (2020) Climate change and trend analysis of temperature: the case of Addis Ababa Ethiopia. Environ Syst Res 9(1):1-15
  • 7. Amato F, Guignard F, Robert S, Kanevski M (2020) A novel framework for spatio-temporal prediction of environmental data using deep learning. Sci Rep 10(1):1-11
  • 8. Bouguettaya A, Yu Q, Liu X, Zhou X, Song A (2015) Efficient agglom-erative hierarchical clustering. Expert Syst Appl 42(5):2785-2797 Cerón WL, Molina-Carpio J, Ayes Rivera I, Andreoli RV, Kayano MT, Canchala T (2020) A principal component analysis approach to assess CHIRPS precipitation dataset for the study of climate variability of the la Plata Basin Southern South America. Nat Hazards 103(1):767
  • 9. Chinchorkar S (2020) Long-term trend analysis of rainfall using hybrid discrete wavelet transform (DWT) based Mann-Kendall tests in central Gujarat region India. Mausam 71(2):209-224
  • 10. Citakoglu H, Minarecioglu N (2021) Trend analysis and change point determination for hydro-meteorological and groundwater data of Kizilirmak basin. Theor Appl Climatol 145(3):1275-1292
  • 11. Darand M, Daneshvar MRM (2014) Regionalization of precipitation regimes in Iran using principal component analysis and hierarchical clustering analysis. Environ Process 1(4):517-532
  • 12. Everitt BS., Dunn G (1991) Applied multivariate data analysis (No. 519.5076 E9)
  • 13. Gupta N, Chavan S (2021) Spatio-temporal characterization of rainfall using an innovative trend and discrete wavelet transformation approaches in Bhakra catchment, India. In: EGU General Assembly Conference Abstracts, pp EGU21-15857
  • 14. Haktanir T, Citakoglu H (2014) Trend, independence, stationarity, and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. J Hydrol Eng 19(9):05014009
  • 15. Haktanir T, Citakoglu H (2015) Closure to “Trend, independence, stationarity, and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey” by Tefaruk Haktanir and Hatice Citakoglu. J Hydrol Eng 20(10):07015017
  • 16. Han H, Hou J, Jiang R, Gong J, Bai G, Kang Y, Li B (2021) Spatial and temporal variation of precipitation characteristics in the semiarid region of Xi’an, northwest China. J Water Clim Chang 12:2697
  • 17. Ho CH, Choi W, Kim J, Kim MK, Yoo HD (2016) Does El Niňo-Southern Oscillation affect the precipitation in Korea on seasonal time scales? Asia-Pac J Atmos Sci 52(4):395-403
  • 18. Hochman A, Saaroni H, Abramovich F, Alpert P (2019) Artificial detection of lower-frequency periodicity in climatic studies by wavelet analysis demonstrated on synthetic time series. J Appl Meteorol Climatol 58(9):2077-2086
  • 19. Hock R, Rasul G, Adler C, Cáceres B, Gruber S, Hirabayashi Y, Zhang Y (2019) High mountain areas. Accessed from. https://www.ipcc. ch/srocc/chapter/chapter-2/
  • 20. Hoegh-Guldberg O, Jacob D, Bindi M, Brown S, Camilloni I, Diedhiou A, Zougmoré, RB (2018) Impacts of 1.5 °C global warming on natural and human systems. In: Global warming of 1.5 °C. An IPCC Special Report
  • 21. Hu Q, He X, Lu XA, Zhang X (2019) Trend Analysis of seasonal precipitation (1960-2013) in SUBREGIONS Of Hunan Province, Central South China using discrete wavelet transforms. J Appl Meteorol Climatol 58(10):2159-2175
  • 22. Huang Y, Yi L, Xiao W, Hou G, Zhou Y (2021) Spatiotemporal variation characteristics of extreme precipitation in the upper reaches of the Hongshui River Basin during 1959-2016. J Water Clim Chang 12:2378
  • 23. Jaya IGNM, Folmer H (2020) Identifying spatiotemporal clusters by means of agglomerative hierarchical clustering and Bayesian regression analysis with spatiotemporally varying coefficients: methodology and application to dengue disease in Bandung Indonesia. Geogr Anal 53(4):767-817
  • 24. Jones JR, Schwartz JS, Ellis KN, Hathaway JM, Jawdy CM (2015) Temporal variability of precipitation in the Upper Tennessee valley. J Hydrol Reg Stud 3:125-138
  • 25. Joshi N, Gupta D, Suryavanshi S, Adamowski J, Madramootoo CA (2016) Analysis of trends and dominant periodicities in drought variables in India: a wavelet transform based approach. Atmos Res 182:200-220
  • 26. Kumar V, Jain SK, Singh Y (2010) Analysis of long-term rainfall trends in India. Hydrol Sci J 55(4):484-496
  • 27. Li H, Gao Y, Hou E (2021) Spatial and temporal variation of precipitation during 1960-2015 in Northwestern China. Nat Hazards 109:1-24
  • 28. Loucks DP, van Beek E (2017) Water resources planning and management: an overview. Water resource systems planning and management. Springer, Charm, pp 1-49
  • 29. Luo F, Li S, Gao Y, Svendsen L, Furevik T, Keenlyside N (2018) The connection between the atlantic multidecadal oscillation and the indian summer monsoon since the industrial revolution is intrinsic to the climate system. Environ Res Lett 13(9):094020
  • 30. Machiwal D, Kumar S, Meena HM, Santra P, Singh RK, Singh DV (2019) Clustering of rainfall stations and distinguishing influential factors using PCA and HCA techniques over the western dry region of India. Meteorol Appl 26(2):300-311
  • 31. Martel JL, Brissette FP, Lucas-Picher P, Troin M, Arsenault R (2021) Climate change and rainfall intensity-duration-frequency curves: overview of science and guidelines for adaptation. J Hydrol Eng 26(10):03121001
  • 32. Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR (2022) Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge University Press
  • 33. Maurya S, Srivastava PK, Yaduvanshi A, Anand A, Petropoulos GP, Zhuo L, Mall RK (2021) Soil erosion in future scenario using CMIP5 models and earth observation datasets. J Hydrol 594:125851
  • 34. Moni DR, Patasaraiya MK, Bhaskar S, Jigyasa B, Dimri AP (2020) Analyzing precipitation and temperature trends of Kanha and Satpura Tiger Reserve Central India. Theor Appl Climatol 140(3-4):1435-1450
  • 35. Moradian S, Yazdandoost F (2021) Seasonal meteorological drought projections over Iran using the NMME data. Nat Hazards 108:1-19
  • 36. MoWR (2014) Mahi Basin. Central Water Commission (CWC) and National Remote Sensing Centre (NRSC), Indian Space Research Organisation (ISRO)
  • 37. Nandargi SS, Barman K (2018) Evaluation of climate change impact on rainfall variation in West Bengal. Acta Sci Agric 2(7)
  • 38. Nisansala WDS, Abeysingha NS, Islam A, Bandara AMKR (2020) Recent rainfall trend over Sri Lanka (1987-2017). Int J Climatol 40(7):3417-3435
  • 39. Oppenheimer M, Glavovic BC, Hinkel J, van de Wal R, Sebesvari Z (2019) Sea level rise and implications for low-lying islands, coasts and communities. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Rama B, Weyer NM (ed) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [In press]
  • 40. Orkodjo TP, Kranjac-Berisavijevic G, Abagale FK (2022) Impact of climate change on future precipitation amounts, seasonal distribution, and streamflow in the Omo-Gibe basin Ethiopia. Heliyon 8(6):e09711
  • 41. Palizdan N, Falamarzi Y, Huang YF, Lee TS (2017) Precipitation trend analysis using discrete wavelet transform at the Langat River Basin, Selangor, Malaysia. Stoch Env Res Risk Assess 31(4):853-877
  • 42. Panda A, Sahu N (2019) Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmos Sci Lett 20(10):e932
  • 43. Panda KC, Singh RM, Singh VK, Singla S, Paramaguru PK (2023) Impact of climate change induced future rainfall variation on dynamics of arid-humid zone transition in the western province of India. J Environ Manag 325:116646
  • 44. Pandey BK, Tiwari H, Khare D (2017) Trend analysis using discrete wavelet transform (DWT) for long-term precipitation (1851-2006) over India. Hydrol Sci J 62(13):2187-2208
  • 45. Pawar U, Hire P (2018) Flood frequency analysis of the Mahi Basin by using log 822 pearson type III probability distribution. Hydrospa-tial Anal 2(2):102-112
  • 46. Pradhan RK, Sharma D, Panda SK, Dubey SK, Sharma A (2019) Changes of precipitation regime and its indices over Rajasthan state of India: impact of climate change scenarios experiments. Clim Dyn 52(5):3405-3420
  • 47. Praveen B, Talukdar S, Mahato S, Mondal J, Sharma P, Islam ARMT, Rahman A (2020) Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci Rep 10(1):1-21
  • 48. Rai P, Dimri AP (2020) Changes in rainfall seasonality pattern over India. Meteorol Appl 27(1):e1823
  • 49. Rajeevan M, McPhaden MJ (2004) Tropical Pacific upper ocean heat content variations and Indian summer monsoon rainfall. Geophys Res Lett 31(18)
  • 50. Rashid MM, Beecham S, Chowdhury RK (2015) Assessment of trends in point rainfall using continuous wavelet transforms. Adv Water Resour 82:1-15
  • 51. Reddy MJ, Adarsh S (2016) Time-frequency characterization of subdivisional scale seasonal rainfall in India using the Hilbert-Huang transform. Stoch Env Res Risk Assess 30(4):1063-1085
  • 52. Rehman S, Sajjad H, Masroor M, Rahaman MH, Ahmed R, Sahana M (2022) Assessment of evidence-based climate variability in Bha-girathi sub-basin of India: a geostatistical analysis. Acta Geophys 70(1):445-463
  • 53. Rhif M, Ben Abbes A, Farah IR, Martínez B, Sang Y (2019) Wavelet transform application for/in non-stationary time-series analysis: a review. Appl Sci 9(7):1345
  • 54. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53-65
  • 55. Ruwangika AM, Perera A, Rathnayake U (2020) Comparison of statistical, graphical, and wavelet transform analyses for rainfall trends and patterns in Badulu Oya catchment Sri Lanka. Complexity 2020:1
  • 56. Sang YF (2013) A review on the applications of wavelet transform in hydrology time series analysis. Atmos Res 122:8-15
  • 57. Schmidt OT, Mengaldo G, Balsamo G, Wedi NP (2019) Spectral empirical orthogonal function analysis of weather and climate data. Monthly Weather Rev 147(8):2979-2995
  • 58. Sharma A, Sharma D, Panda SK, Dubey SK, Pradhan RK (2018) Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India. Glob Planet Chang 161:82-96
  • 59. Shiau JT, Chiu YF (2019) Wavelet-based detection of time-frequency changes for monthly rainfall and spi series in Taiwan. Asia-Pac J Atmos Sci 55(4):657-667
  • 60. Shrestha S, Bhatta B, Shrestha M, Shrestha PK (2018) Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Sci Total Environ 643:1610-1622
  • 61. Srivastava AK, Rajeevan M, Kshirsagar SR (2009) Development of a high resolution daily gridded temperature data set (1969-2005) for the Indian region. Atmos Sci Lett 10(4):249-254
  • 62. Srivastava PK, Pradhan RK, Petropoulos GP, Pandey V, Gupta M, Yaduvanshi A, Sahai AK (2021) Long-term trend analysis of precipitation and extreme events over Kosi River Basin in India. Water 13(12):1695
  • 63. Tabari H (2020) Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep 10(1):1-10
  • 64. Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO-monsoon system. J Clim 12(8):2679-2690
  • 65. van der Wiel K, Bintanja R (2021) Contribution of climatic changes in mean and variability to monthly temperature and precipitation extremes. Commun Earth Environ 2(1):1-11
  • 66. Varikoden H, Revadekar JV, Kuttippurath J, Babu CA (2019) Contrasting trends in southwest monsoon rainfall over the Western Ghats region of India. Clim Dyn 52(7):4557-4566
  • 67. Vijith H, Dodge-Wan D (2019) Spatial and temporal characteristics of rainfall over a forested river basin in NW Borneo. Meteorol Atmos Phys 132:1-20
  • 68. Viswanadhapalli Y, Dasari HP, Dwivedi S, Madineni VR, Langodan S, Hoteit I (2020) Variability of monsoon low-level jet and associated rainfall over India. Int J Climatol 40(2):1067-1089
  • 69. Wang F, Shao W, Yu H, Kan G, He X, Zhang D, Wang G (2020a) Re-evaluation of the power of the mann-kendall test for detecting monotonic trends in hydrometeorological time series. Front Earth Sci 8:14
  • 70. Wang Y, Xu Y, Tabari H, Wang J, Wang Q, Song S, Hu Z (2020b) Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmos Res 231:104673
  • 71. Wang Y, Yang HY, He P (2022) Continuous wavelet analysis of matter clustering using the gaussian-derived wavelet. Astrophys J 934(1):77
  • 72. Ward JH Jr, Hook ME (1963) Application of an hierarchical grouping procedure to a problem of grouping profiles. Educ Psychol Meas 23(1):69-81
  • 73. Xavier A, Kottayil A, Mohanakumar K, Xavier PK (2018) The role of monsoon low-level jet in modulating heavy rainfall events. Int J Climatol 38:e569-e576
  • 74. Yao J, Yang Q, Mao W, Zhao Y, Xu X (2016) Precipitation trendelevation relationship in arid regions of the China. Glob Planet Chang 143:1-9
  • 75. Yerdelen C, Abdelkader M, Eri E (2021) Assessment of drought in SPI series using continuous wavelet analysis for GEDIZ basin, Turkey. Atmos Res 260:105687
  • 76. Zamani R, Mirabbasi R, Nazeri M, Meshram SG, Ahmadi F (2018) Spatio-temporal analysis of daily, seasonal and annual precipitation concentration in Jharkhand state, India. Stoch Env Res Risk Assess 32(4):1085-1097
  • 77. Zerouali B, Chettih M, Abda Z, Mesbah M, Djemai M (2020) The use of hybrid methods for change points and trends detection in rainfall series of northern Algeria. Acta Geophys 68(5):1443-1460
  • 78. Zhu H, He H, Fan H, Xu L, Jiang J, Jiang M, Xu Y (2020) Regional characteristics of long-term variability of summer precipitation in the poyang lake basin and possible links with large-scale circulations. Atmosphere 11(10):1033
  • 79. Zhu L, Ma B, Zhao X (2010) Clustering validity analysis based on silhouette coefficient. J Comput Appl 30(2):139-141
  • 80. Zolfaghari F, Khosravi H, Shahriyari A, Jabbari M, Abolhasani A (2019) Hierarchical cluster analysis to identify the homogeneous desertification management units. Plos One 14(12):e0226355
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18a399e2-21f8-4e3c-88a0-4ce179cf7332
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.