PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the Bacillus from vegetable rhizosphere for plant growth

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bacillus is a ubiquitous soil bacterium for its plant growth-promoting properties, and it is widely used as a biofertilizer. This research aimed to isolate and determine the morphology and biochemical properties associated with plant-growth promotion ability characterizing Bacillus strains. The bacteria were isolated from the rhizosphere of various highland vegetables grown in Andisols soil in Indonesia. Bacillus isolation was conducted using the serial dilution plate method by means of tryptic soy agar. Characterization of the isolated bacteria included Gram staining, biochemical characteristics, pathogenicity testing, and the production of metabolites, including organic acids, phytohormones, and exopolysaccharides. Four bacterial isolates were identified as Bacillus based on colony and cell morphology, the presence of endospore, as well as biochemical properties and metabolite production. The species determination by PCR amplification and 16S rRNA gene sequence analysis revealed that the four Bacillus were identified as Bacillus safensis strain MDL5, Bacillus altitudinis strain RPW2, and Bacillus sp. strain SZ057. The study presents the occurrence of Bacillus within the rhizosphere of vegetables and the understanding of their properties being considered for biofertilizer development.
Rocznik
Strony
109--120
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Student Doctoral Program, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
  • Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
  • Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
  • Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
  • Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
  • Indonesian Fertilizer Research Institute, PT. Pupuk Indonesia, Jl. Taman Anggrek No. 2, Kemanggisan Jakarta Barat 11480, Indonesia
  • Indonesian Fertilizer Research Institute, PT. Pupuk Indonesia, Jl. Taman Anggrek No. 2, Kemanggisan Jakarta Barat 11480, Indonesia
Bibliografia
  • 1. Abdelkrim, T., El-Mokhtar, D. A., Radia, A., & Bouziane, A. (2021). Screening and characterization of bacillus strains producing highly thermostable amylase from various hot springs of Algeria. Brazilian Archives of Biology and Technology, 64, 1–9. https://doi.org/10.1590/1678-4324-2021190020
  • 2. Ahmed, E. A., Hassan, E. A., Tobgy, K. M. K. E., & Ramadan, E. M. (2014). Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Annals of Agricultural Sciences, 59(2), 273–280. https://doi.org/10.1016/j.aoas.2014.11.016
  • 3. Andreote, F. D., Gumiere, T., & Durrer, A. (2014). Exploring interactions of plant microbiomes. In Scientia Agricola, 71(6), 528–539. Scientia Agricola. https://doi.org/10.1590/0103-9016-2014-0195
  • 4. Bai, Y. Q., Xin, X. L., Lai, Y. Z., Zhang, X. C., Zhang, G. J., Liu, J. F., & Xin, Y. P. (2013). Isolation and screening of Bacillus subtilis. J. Anim. Sci. & Vet. Med, 32, 24–31.
  • 5. Bandopadhyay, S. (2020). Application of plant growth promoting Bacillus thuringiensis as biofertilizer on abelmoschus esculentus plants under field condition. Journal of Pure and Applied Microbiology, 14(2), 1287–1294. https://doi.org/10.22207/JPAM.14.2.24
  • 6. Bhagat, N., Raghav, M., Dubey, S., & Bedi, N. (2021). Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance. In Journal of Microbiology and Biotechnology, 31(8), 1045– 1059. Korean Society for Microbiolog and Biotechnology. https://doi.org/10.4014/jmb.2105.05009
  • 7. Bisen, P. S. (2014). Microbial staining. In Microbes in Practice 139–155. https://www.researchgate.net/ publication/279865907
  • 8. Borriss, R. (2020). Bacillus. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi 107–132. Elsevier. https://doi.org/10.1016/ B978-0-12-823414-3.00007-1
  • 9. Chaudhary, P., Agri, U., Chaudhary, A., Kumar, A., & Kumar, G. (2022). Endophytes and their potential in biotic stress management and crop production. In Frontiers in Microbiology, 13. Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.933017
  • 10. Chebotar, V. K., Zaplatkin, A. N., Chizhevskaya, E. P., Gancheva, M. S., Voshol, G. P., Malfanova, N. V., Baganova, M. E., Khomyakov, Y. V., & Pishchik, V. N. (2024). Phytohormone production by the endophyte bacillus safensis TS3 increases plant yield and alleviates salt stress. Plants, 13(1). https://doi.org/10.3390/plants13010075
  • 11. Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1), 33–41. https://doi.org/10.1016/j.apsoil.2005.12.002
  • 12. del Barrio-Duque, A., Ley, J., Samad, A., Antonielli, L., Sessitsch, A., & Compant, S. (2019). Beneficial endophytic bacteria-serendipita indica interaction for crop enhancement and resistance to phytopathogens. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02888
  • 13. Hernández-Huerta, J., Tamez-Guerra, P., Gomez- Flores, R., Delgado-Gardea, M. C. E., Robles- Hernández, L., Gonzalez-Franco, A. C., & Infante- Ramirez, R. (2023). Pepper growth promotion and biocontrol against Xanthomonas euvesicatoria by bacillus cereus and bacillus thuringiensis formulations. PeerJ, 11. https://doi.org/10.7717/peerj.14633
  • 14. Hindersah, R., Setiawati, M. R., Fitriatin, B. N., Suryatmana, P., & Asmiran, P. (2019). Chemical characteristics of organic-based liquid inoculant of Bacillus spp. IOP Conference Series: Earth and Environmental Science, 393(1). https://doi.org/10.1088/17551315/393/1/012005
  • 15. Hindersah, R., & Sudirja, R. (2010). Suhu dan waktu inkubasi optimasi eksopolisakarida dan fitohormon Suhu dan Waktu Inkubasi untuk Optimasi Kandungan Eksopolisakarida dan Fitohormon Inokulan Cair Azotobacter sp. LKM6. Jurnal Natur Indonesia, 13(1), 67–71.
  • 16. Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: Biophysics, biogeochemistry and ecological relevance. In Plant and Soil, 321(1–2), 117–152. https://doi.org/10.1007/s11104-008-9885-9
  • 17. Holt, J., Krieg, N., Sneath, P., Staley, J., & Williams, S. (1994). Bergey’s manual of determinative bacteriology. (Williams - Wilkins, Ed.; 9th ed.). Lippincott.
  • 18. Hu, Y., Duan, C., Fu, D., Wu, X., Yan, K., Fernando, E., Karunarathna, S. C., Promputtha, I., Mortimer, P. E., & Xu, J. (2020). Structure of bacterial communities in phosphorus-enriched rhizosphere soils. Applied Sciences (Switzerland), 10(18). https://doi.org/10.3390/APP10186387
  • 19. Kushwaha, P., Srivastava, R., Pandiyan, K., Singh, A., Chakdar, H., Kashyap, P. L., Bhardwaj, A. K., Murugan, K., Karthikeyan, N., Bagul, S. Y., Srivastava, A. K., & Saxena, A. K. (2021). Enhancement in plant growth and zinc biofortification of chickpea (Cicer arietinum L.) by bacillus altitudinis. Journal of Soil Science and Plant Nutrition, 21(2), 922–935. https://doi.org/10.1007/s42729-021-00411-5
  • 20. Lay, B. W. (1994). Analisis Mikroba di Laboratorium (1st ed., 1). PT. Raja Grafika Persada.
  • 21. Lelliot, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants (1st ed., 2). Blackwell Scientific Publications, Oxford.
  • 22. Ling, N., Wang, T., & Kuzyakov, Y. (2022). Rhizosphere bacteriome structure and functions. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28448-9
  • 23. Liu, P., Liu, H., Semenec, L., Yuan, D., Yan, S., Cain, A. K., & Li, M. (2022). Length-based separation of bacillus subtilis bacterial populations by viscoelastic microfluidics. Microsystems and Nanoengineering, 8(1). https://doi.org/10.1038/s41378-021-00333-3
  • 24. Logan, N. A., Berge, O., Bishop, A. H., Busse, H. J., De Vos, P., Fritze, D., Heyndrickx, M., Kämpfer, P., Rabinovitch, L., Salkinoja-Salonen, M. S., Seldin, L., & Ventosa, A. (2009). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. International Journal of Systematic and Evolutionary Microbiology, 59(8), 2114–2121. https://doi.org/10.1099/ijs.0.013649-0
  • 25. Marista, E., Khotimah, S., & Linda, R. (2013). Bakteri pelarut fosfat hasil isolasi dari tiga Jenis Tanah rizosfer tanaman pisang nipah (Musa paradisiaca var. nipah) di Kota Singkawang. Protobiont, 2(2), 93–101.
  • 26. Masood, S., Zhao, X. Q., & Shen, R. F. (2020). Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization. Scientia Horticulturae, 272. https://doi.org/10.1016/j.scienta.2020.109581
  • 27. Ming, H., Lina, D. O. U., & Qing, T. I. A. N. (2008). Advances in application research of Bacillus subtilis. J. Anhui Agric Science, 36, 11623–11622.
  • 28. Morcillo, R. J. L., & Manzanera, M. (2021). The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. In Metabolites, 11(6). MDPI AG. https://doi.org/10.3390/ metabo11060337
  • 29. Mukhtar, T., Ali, F., Rafique, M., Ali, J., Afridi, M. S., Smith, D., Mehmood, S., Amna, Souleimanov, A., Jellani, G., Sultan, T., Munis, F. H., & Chaudhary, H. J. (2023). Biochemical characterization and potential of bacillus safensis strain SCAL1 to mitigate heat stress in Solanum lycopersicum L. Journal of Plant Growth Regulation, 42(1), 523–538. https://doi.org/10.1007/s00344-021-10571-4
  • 30. Mumtaz, M. Z., Barry, K. M., Baker, A. L., Nichols, D. S., Ahmad, M., Zahir, Z. A., & Britz, M. L. (2019). Production of lactic and acetic acids by Bacillus sp. ZM20 and Bacillus cereus following exposure to zinc oxide: A possible mechanism for Zn solubilization. Rhizosphere, 12. https://doi.org/10.1016/j.rhisph.2019.100170
  • 31. Nwachukwu, B. C., Ayangbenro, A. S., & Babalola, O. O. (2021). Elucidating the rhizosphere associated bacteria for environmental sustainability. In Agriculture (Switzerland) 11(1), 1–18. MDPI AG. https://doi.org/10.3390/agriculture11010075
  • 32. Ortega-García, J., Holguín-Peña, R. J., Preciado- Rangel, P., Guillén-Enríquez, R. R., Zapata-Sifuentes, G., Nava-Santos, J. M., & Rueda-Puente, E. O. (2021). Bacillus amyloliquefaciens as a halo- PGPB and chitosan effects in nutritional value and yield production of Asparagus officinalis L. under Sonora desert conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 1–16. https://doi.org/10.15835/nbha49312414
  • 33. Patel, D. K., Archana, G., & Kumar, G. N. (2008). Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Current Microbiology, 56(2), 168–174. https://doi.org/10.1007/s00284-007-9053-0
  • 34. Popoff, M. R. (2024). Overview of bacterial protein toxins from pathogenic bacteria: Mode of action and insights into evolution. In Toxins, 16(4). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/toxins16040182
  • 35. Poveda, J., & González-Andrés, F. (2021). Bacillus as a source of phytohormones for use in agriculture. In Applied Microbiology and Biotechnology, 105(23), 8629–8645. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00253-021-11492-8
  • 36. Putra, G. W., Ramona, Y., & Proborini, M. W. (2020). Eksplorasi Dan Identifikasi Mikroba Pada Rhizosfer Tanaman Stroberi (Fragaria x ananassa Dutch.) Di Kawasan Pancasari Bedugul. Metamorfosa: Journal of Biological Sciences, 7(2), 62. https://doi.org/10.24843/metamorfosa.2020.v07.i02.p09
  • 37. Qaswar, M., Jing, H., Ahmed, W., Dongchu, L., Shujun, L., Lu, Z., Cai, A., Lisheng, L., Yongmei, X., Jusheng, G., & Huimin, Z. (2020). Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil and Tillage Research, 198. https://doi.org/10.1016/j.still.2019.104569
  • 38. Radhakrishnan, R., Hashem, A., & Abd Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology, 8(SEP). https://doi.org/10.3389/fphys.2017.00667
  • 39. Radhakrishnan, R., & Lee, I. J. (2016). Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiology and Biochemistry, 109, 181–189. https://doi.org/10.1016/j. plaphy.2016.09.018
  • 40. Schinner, Franz., Öhlinger, Richard., Kandeler, Ellen., & Margesin, Rosa. (1996). Methods in Soil Biology. Springer Berlin Heidelberg.
  • 41. Seldin, L., Van Elsas, J. D., & Penido, E. G. C. (1984). Bacillus azotofixans sp. nov. a Nitrogen-Fixing Species from Brazilian Soils and Grass Roots. In International Journal of Systematic Bacteriology 34(4).
  • 42. Setiawati, T. C., Erwin, D., Mandala, M., & Hidayatulah, A. (2022). Use of bacillus as a plant growth-promoting rhizobacteria to improve phosphate and potassium availability in acidic and saline soils. KnE Life Sciences. https://doi.org/10.18502/kls.v7i3.11160
  • 43. Silva, L. I. da, Pereira, M. C., Carvalho, A. M. X. de, Buttrós, V. H., Pasqual, M., & Dória, J. (2023). Phosphorus-solubilizing microorganisms: A key to sustainable agriculture. In Agriculture (Switzerland) 13(2). MDPI. https://doi.org/10.3390/agriculture13020462
  • 44. Soni, R., & Keharia, H. (2021). Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. In Planta, 254(3). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00425-021-03695-0
  • 45. Spaepen, S., Vanderleyden, J., & Okon, Y. (2009). Chapter 7 Plant Growth-Promoting Actions of Rhizobacteria. In Advances in Botanical Research, 51(C), 283–320. https://doi.org/10.1016/S0065-2296(09)51007-5
  • 46. Sulistiyani, T. R., Kusmiati, M., & Putri, G. A. (2021). The 16S rRNA analysis and enzyme screening of bacillus from rhizosphere soil of Lombok island. Jurnal Ilmu Pertanian Indonesia, 26(4), 582–590. https://doi.org/10.18343/jipi.26.4.582
  • 47. Sun, M., Ye, S., Xu, Z., Wan, L., & Zhao, Y. (2021). Endophytic Bacillus altitudinis Q7 from Ginkgo biloba inhibits the growth of Alternaria alternata in vitro and its inhibition mode of action. Biotechnology and Biotechnological Equipment, 35(1), 880–894. https://doi.org/10.1080/13102818.2021.1936639
  • 48. Suwarto, S., & Muhammad Hilmi. (2023). Efektivitas Bacillus subtilis QST713:109 CFU/ml sebagai plant growth promoting Rhizobacteria pada Tanaman Kubis (Brassica oleracea). Jurnal Hortikultura Indonesia, 14(2), 118–125. https://doi.org/10.29244/jhi.14.2.118-125
  • 49. Tahir, M., Mirza, M. S., Zaheer, A., Dimitrov, M. R., Smidt, H., & Hameed, S. (2013). Isolation and identification of phosphate solubilizer Azospirillum, Bacillus and Enterobacter strains by 16SrRNA sequence analysis and their effect on growth of wheat (Triticum aestivum L.). Australian Journal of Crop Science, 7(9), 1284–1292.
  • 50. Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021). Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical p cycle. In Biology, 10(2), 1–19. MDPI AG. https://doi.org/10.3390/ biology10020158
  • 51. Wyrick’ And, P. B., & Rogers, H. J. (1973). Isolation and characterization of cell wall-defective variants of bacillus subtilis and bacillus licheniformis. In Journal of Bacteriology. https://journals.asm.org/journal/jb
  • 52. Zerin, T. (2020). Isolation of Bacillus spp. from rhizosphere of garden soil: their potential role in amylase production and nitrogen cycle. Stamford Journal of Microbiology, 10(1), 12–15. https://doi.org/10.3329/sjm.v10i1.50726
  • 53. Zhao, D., Ding, Y., Cui, Y., Zhang, Y., Liu, K., Yao, L., Han, X., Peng, Y., Gou, J., Du, B., & Wang, C. (2022). Isolation and genome sequence of a novel phosphate-solubilizing rhizobacterium Bacillus altitudinis GQYP101 and its effects on rhizosphere microbial community structure and functional traits of corn seedling. In Current Microbiology, 79(9). Springer. https://doi.org/10.1007/s00284-022-02944-z
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-189f7b56-a79c-4059-b593-93c96ecd6368
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.