PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The artificial neural network method (ANN) is widely used in both modeling and optimization of manufacturing processes. Determination of optimum processing parameters plays a key role as far as both cost and time are concerned within the manufacturing sector. The burnishing process is simple, easy and cost-effective, and thus it is more common to replace other surface finishing processes in the manufacturing sector. This study investigates the effect of burnishing parameters such as the number of passes, burnishing force, burnishing speed and feed rate on the surface roughness and microhardness of an AZ91D magnesium alloy using different artificial neural network models (i.e. the function fitting neural network (FITNET), generalized regression neural network (GRNN), cascade-forward neural network (CFNN) and feed-forward neural network (FFNN). A total of 1440 different estimates were made by means of ANN methods using different parameters. The best average performance results for surface roughness and microhardness are obtained by the FITNET model (i.e. mean square error (MSE): 0.00060608, mean absolute error (MAE): 0.01556013, multiple correlation coefficient (R): 0.99944545), using the Bayesian regularization process (trainbr)). The FITNET model is followed by the FFNN (i.e. MAE: 0.01707086, MSE: 0.00072907, R: 0.99932069) and CFNN (i.e. MAE: 0.01759166, MSE: 0.00080154, R: 0.99924845) models with very small differences, respectively. The GRNN model has noted worse estimation results (i.e. MSE: 0.00198232, MAE: 0.02973829, R: 0.99900783) as compared with the other models. As a result, MSE, MAE and R values show that it is possible to predict the surface roughness and microhardness results of the burnishing process with high accuracy using ANN models.
Rocznik
Strony
729--739
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Mersin University, Engineering Faculty, Department of Mechanical Engineering, 33343, Ciftlikkoy, Mersin, Turkey
autor
  • Mersin University, Engineering Faculty, Department of Computer Engineering, 33343, Ciftlikkoy, Mersin, Turkey
autor
  • Mersin University, Engineering Faculty, Department of Mechanical Engineering, 33343, Ciftlikkoy, Mersin, Turkey
autor
  • Mersin University, Engineering Faculty, Department of Computer Engineering, 33343, Ciftlikkoy, Mersin, Turkey
Bibliografia
  • [1] B.B. Buldum, A. Sik, and I. Ozkul, “Investigation of magnesium alloys machinability”, International Journal of Electron-ics, Mechanical and Mechatronics Engineering, 2(3) 261‒268(2013).
  • [2] X.-J. Cui, M.-T. Li, R.-S. Yang, and Z.-X. Yu, “Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy”, Applied Surface Science363, 91‒100 (2016).
  • [3] J. Iwaszko, M. Strzelecka, and K. Kudla, “Surface modification of AZ91 magnesium alloy using GTAW technology”, Bull. Pol. Ac.: Tech.65(6) 917‒926 (2017).
  • [4] Y. Fouad, M. Mhaede, and L. Wagner, “Effects of mechanical surface treatments on fatigue performance of extruded ZK60 alloy”, Fatigue & Fracture of Engineering Materials & Structures 34, 403‒407 (2011).
  • [5] D. Mahajan and R. Tajane, “A review on ball burnishing process”, International Journal of Scientific and Research Publi-cations3, 1‒8 (2013).
  • [6] A.H. Suhail, N. Ismail, S. Wong, and N.A. Jalil, “Optimiza-tion of cutting parameters based on surface roughness and assistance of work piece surface temperature in turning process”, American journal of engineering and applied sciences3, 102‒108 (2010).
  • [7] M. Hamamci and E. Topal, “Consideration of stepover ratio in optimisation of cutting parameters for surface roughness during high speed machining”, Journal of the Balkan Tribological Association21(4) 753‒766 (2015).
  • [8] L.N. López de Lacalle, A. Rodriguez, A. Lamikiz, A. Celaya, and R. Alberdi, “Five-axis machining and burnishing of complex parts for the improvement of surface roughness”, Materials and Manufacturing Processes26, 997‒1003 (2011).
  • [9] M. Ugurlu, S.C. Cagan, and B.B. Buldum, “Improvement of sur-face roughness using ANOVA for AZ31B magnesium alloy with ball burnishing process”, Int J Engine Res Technol6, 216‒221(2017).
  • [10] A. Rodríguez, L.L. de Lacalle, A. Celaya, A. Lamikiz, and J. Albizuri, “Surface improvement of shafts by the deep ball-burnishing technique”, Surface and Coatings Technology 206, 2817‒2824 (2012).
  • [11] İ. Ovali and A. Akkurt, “Comparison of Burnishing Process with Other Methods of Hole Surface Finishing Processes Applied on Brass Materials”, Materials and Manufacturing Processes 26, 1064‒1072 (2011).
  • [12] U. Esme, A. Sagbas, F. Kahraman, and M.K. Kulekci, “Use of artificial neural networks in ball burnishing process for the prediction of surface roughness of AA 7075 aluminum alloy”, Materiali in tehnologije42, 215‒219 (2008).
  • [13] T. El-Taweel and M. El-Axir, “Analysis and optimization of the ball burnishing process through the Taguchi technique”, The International Journal of Advanced Manufacturing Technology41, 301‒310 (2009).
  • [14] A. Sagbas, “Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirabilty function”, Advances in Engineering Software 42, 992‒998 (2011).
  • [15] P.S. Dabeer and G.K. Purohit, “Effect of ball burnishing parameters on surface roughness using surface roughness methodology”, Advances in production engineering & management 111 (2010).
  • [16] A. Ibrahim, S.A. Rabbo, M. El-Axir, and A. Ebied, “Center rest balls burnishing parameters adaptation of steel components using fuzzy logic”, Journal of materials processing technology 209, 2428‒2435 (2009).
  • [17] K. Low and K. Wong, “Influence of ball burnishing on surface quality and tribological characteristics of polymers under dry sliding conditions”, Tribology International 44, 144‒153 (2011).
  • [18] A.A. García-Granada, G. Gomez-Gras, R. Jerez-Mesa, J.A. Tra-\vieso-Rodriguez, and G. Reyes, “Ball-burnishing effect on deep residual stress on AISI 1038 and AA2017-T4”, Materials and Manufacturing Processes, 1‒11 (2017).
  • [19] B. Denkena, T. Grove, and O. Maiss, “Surface texturing of rolling elements by hard ball-end milling and burnishing”, The International Journal of Advanced Manufacturing Technology, 1‒9 (2017).
  • [20] H. Amdouni, H. Bouzaiene, A. Montagne, A. Van Gorp, T. Coor-\evits, M. Nasri, and A. Iost, “Experimental study of a six new ball-burnishing strategies effects on the Al-alloy flat surfaces integrity enhancement”, The International Journal of Advanced Manufacturing Technology90, 2271‒2282 (2017).
  • [21] M. Bourebia, L. Laouar, H. Hamadache, and S. Dominiak, “Improvement of surface finish by ball burnishing: approach by fractal dimension”, Surface Engineering33, 255‒262 (2017).
  • [22] F.-J. Shiou, S.-J. Huang, A.J. Shih, J. Zhu, and M. Yoshino, “Fine surface finish of a hardened stainless steel using a new burnish-ing tool”, Procedia Manufacturing10, 208‒217 (2017).
  • [23] M. Babic, V. Kocovic, D. Vukelic, G. Mihajlovic, M. Eric, and B. Tadic, “Investigation of ball burnishing processing on mechanical characteristics of wooden elements”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science231, 120‒127 (2017).
  • [24] N. Karkalos, N. Galanis, and A. Markopoulos, “Surface rough-ness prediction for the milling of Ti–6Al–4V ELI alloy with the use of statistical and soft computing techniques”, Measurement90, 25‒35 (2016).
  • [25] B. Das, S. Roy, R. Rai, and S. Saha, “Studies on Effect of Cut-ting Parameters on Surface Roughness of Al-Cu-TiC MMCs: An Artificial Neural Network Approach”, Procedia Computer Science45, 745‒752 (2015).
  • [26] S. Ali and N. Dhar, “Tool wear and surface roughness prediction using an artificial neural network (ANN) in turning steel under minimum quantity lubrication (MQL)”, World Academy of Science, Engineering and Technology62, 830‒839 (2010).
  • [27] A.A. Abdullah, U.J. Naeem, and C.H. Xiong, Estimation and optimization cutting conditions of surface roughness in hard turning using Taguchi approach and artificial neural network, Advanced Materials Research, Trans Tech Publ., 662‒668 (2012).
  • [28] I. Asilturk, “Predicting surface roughness of hardened AISI 1040 based on cutting parameters using neural networks and multiple regression”, The International Journal of Advanced Manufacturing Technology63, 249‒257 (2012)
  • [29] F. Jafarian, M. Taghipour, and H. Amirabadi, “Application of artificial neural network and optimization algorithms for optimizing surface roughness, tool life and cutting forces in turning operation”, Journal of Mechanical Science and Technology 27, 1469‒1477 (2013).
  • [30] U. Yalcin, A.D. Karaoglan, and I. Korkut, “Optimization of cutting parameters in face milling with neural networks and Taguchi based on cutting force, surface roughness and temperatures”, International Journal of Production Research51, 3404‒3414 (2013).
  • [31] U. Zuperl, F. Cus, B. Mursec, and T. Ploj, “A generalized neural network model of ball-end milling force system”, Journal of materials processing technology175, 98‒108 (2006).
  • [32] R. Quiza, L. Figueira, and J. Paulo Davim, “Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel”, The International Journal of Advanced Manufacturing Technology37, 641‒648 (2008).
  • [33] D. Rajeev, D. Dinakaran, and S.C.E. Singh, “Artificial neural network based tool wear estimation on dry hard turning processes of AISI4140 steel using coated carbide tool”, Bull. Pol. Ac.: Tech.65(4) 553‒559 (2017).
  • [34] H. Oktem, T. Erzurumlu, and M. Col, “A study of the Taguchi optimization method for surface roughness in finish milling of mold surfaces”, The International Journal of Advanced Manufacturing Technology28, 694‒700 (2006).
  • [35] F. Pishbin, A. Simchi, M. Ryan, and A. Boccaccini, “A study of the electrophoretic deposition of Bioglass® suspensions using the Taguchi experimental design approach”, Journal of the European Ceramic Society30, 2963‒2970 (2010).
  • [36] M.S. Phadke, Quality engineering using robust design, Prentice Hall PTR, 1995.
  • [37] S. Park, Robust design and analysis for quality engineering, Boom Koninklijke Uitgevers, 1996.
  • [38] S. Hakim, “Development of artificial neural network with application to some civil engineering problems”, University Putra Malaysia (2006).
  • [39] J. Ghaboussi, J. Garrett Jr, and X. Wu, “Knowledge-based modeling of material behavior with neural networks”, Journal of Engineering Mechanics117, 132‒153 (1991).
  • [40] Z. Sen, A. Altunkaynak, and M. Özger, “Sediment concentration and its prediction by perceptron Kalman filtering procedure”, Journal of Hydraulic Engineering130, 816‒826 (2004).
  • [41] M.H. Beale, M.T. Hagan, and H.B. Demuth, Neural network toolbox™ user’s guide, R2012a, The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760‒2098, www. mathworks. com, Citeseer, 2012.
  • [42] A. Hedayat, H. Davilu, A.A. Barfrosh, and K. Sepanloo, “Estimation of research reactor core parameters using cascade feed forward artificial neural networks”, Progress in Nuclear Energy51, 709‒718 (2009).
  • [43] B. Kim, D.W. Lee, K.Y. Park, S.R. Choi, and S. Choi, “Prediction of plasma etching using a randomized generalized regression neural network”, Vacuum76, 37‒43 (2004).
  • [44] I.H. Witten, E. Frank, M.A. Hall, and C.J. Pal, Data Min-ing: Practical machine learning tools and techniques, Morgan Kaufmann, 2016.
  • [45] M. Nemat, and A. Lyons, “An investigation of the surface topography of ball burnished mild steel and aluminium”, The Inter-national Journal of Advanced Manufacturing Technology 16, 469‒473 (2000).
  • [46] D.S. Rao, H.S. Hebbar, M. Komaraiah, and U. Kempaiah, “Investigations on the Effect of Ball Burnishing Parameters on Surface Roughness and Corrosion Resistance of Hsla Dual-Phase Steels”, East African Journal of Science2, 164‒169(2008).
  • [47] F.M. Al Quran, “The effect of roller burnishing on surface hard-ness and roughness of aluminum alloy”, International Journal of Mechanics and Applications5, 37‒40 (2015).
  • [48] Z.F. Kovács, Z.J. Viharos, and J. Kodácsy, “Determination of the working gap and optimal machining parameters for magnetic assisted ball burnishing. Measurement118, 172‒180 (2018).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-189ee0e7-828e-4226-bc17-a3b4ea00f372
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.