PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Quasi Real-Time X-Ray Fluorescence Spectrometer in Source Apportionment of Particulate Matter in a Typical Suburban Area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article studies the data from a weekly campaign devoted to the study of the elemental composition of PM10 in a selected receptor, in a suburban area (Mazowieckie Voivodeship). The sampling point was located at the intersection of main roads and in the vicinity of a typical single-family housing, not far from the electrified Warsaw-Białystok railway line and a small heating plant. The research was carried out in the summer season, in order to minimize the impact of municipal emissions on the concentrations and elemental composition of PM10. A Horiba PX-375 X-ray fluorescence spectrometer was used to measure the one-hour concentrations of elements related to PM10. On the basis of the obtained results, the enrichment factors for PM10 in the analyzed elements (EF) were calculated and the principal components analysis (PCA) was performed. It was found that although the elemental composition of PM10 in all tested time intervals was noticeably influenced by the emissions from transport, the municipal emissions had a significant impact on the elemental composition, especially those related to coal combustion, and thus the concentration of PM10 during the study period. It seems that the possibility of observing the influence of all relevant sources on the composition and concentration of PM10 was possible owing to the use of hourly-averaged measurements of the elemental composition of PM10. In the case of daily averaged measurements, in a receptor with such PM10 elemental profile, it would be impossible to determine the periods, in which specific – qualitatively completely different – emission sources dominate.
Rocznik
Strony
89--97
Opis fizyczny
Bibliogr. 39 poz., tab.
Twórcy
autor
  • Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • The Main School of Fire Service, ul. Słowackiego 52/54, 01-629 Warsaw, Poland
  • The Main School of Fire Service, ul. Słowackiego 52/54, 01-629 Warsaw, Poland
Bibliografia
  • 1. Barbieri, M. 2016. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. Journal of Geology & Geophysics, 5.
  • 2. Bokwa, A. 2008. Environmental Impacts of Long-Term Air Pollution Changes in Kraków, Poland. Polish Journal of Environmental Studies, 17.
  • 3. Cesari, D., Amato, F., Pandolfi, M., Alastuey, A., Querol, X., Contini, D. 2016. An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. Environmental Science and Pollution Research, 23, 15133–15148.
  • 4. Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N.M., George, C., Goldstein, A.H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.E., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T.F., Monod, A., Prévôt, A.S.H., Seinfeld, J.H., Surratt, J.D., Szmigielski, R., Wildt, J. 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 9, 5155–5236.
  • 5. Hans Wedepohl, K. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta.
  • 6. Hopke, P.K. 2016. Review of receptor modeling methods for source apportionment. Journal of the Air and Waste Management Association.
  • 7. Hulskotte, J.H.J., van der Gon, H.A.C.D., Visschedijk, A.J.H., Schaap, M. 2007. Brake wear from vehicles as an important source of diffuse copper pollution. In: Water Science and Technology.
  • 8. Idriss, I.E.A., Abdel-Azim, M., Karar, K.I., Osman, S., Idris, A.M. 2021. Isotopic and chemical facies for assessing the shallow water table aquifer quality in Goly Region, White Nile State, Sudan: focusing on nitrate source apportionment and human health risk. Toxin Reviews, 40, 764–776.
  • 9. IMGW-PIB. 2021. Dane publiczne IMGW-PIB.
  • 10. Jones, W.P., Furnas, G.W. 1987. Pictures of relevance: A geometric analysis of similarity measures. Journal of the American Society for Information Science, 38, 420–442.
  • 11. Kaivosoja, T., Jalava, P.I., Lamberg, H., Virén, A., Tapanainen, M., Torvela, T., Tapper, U., Sippula, O., Tissari, J., Hillamo, R., Hirvonen, M.R., Jokiniemi, J. 2013. Comparison of emissions and toxicological properties of fine particles from wood and oil boilers in small (20–25 kW) and medium (5–10 MW) scale. Atmospheric Environment, 77, 193–201.
  • 12. Kormoker, T., Proshad, R., Islam, M.S., Shamsuzzoha, M., Akter, A., Tusher, T.R. 2021. Concentrations, source apportionment and potential health risk of toxic metals in foodstuffs of Bangladesh. Toxin Reviews, 40, 1447–1460.
  • 13. Li, J., Deng, Q., Lu, C., Huang, B. 2010. Chemical compositions and source apportionment of atmospheric PM10 in suburban area of Changsha, China. Journal of Central South University of Technology, 17, 509–515.
  • 14. Li, Q., Zhang, H., Guo, S., Fu, K., Liao, L., Xu, Y., Cheng, S. 2020. Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environmental Science and Pollution Research, 27, 9000–9011.
  • 15. Liang, S.Y., Cui, J.L., Bi, X.Y., Luo, X.S., Li, X.D. 2019. Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China. Science of the Total Environment.
  • 16. Mach, T., Bihałowicz, J., Bihałowicz, J.S. 2021. Dobowa i godzinowa zmienność stężeń Pb, Ni, Zn, Mn i V w powietrzu atmosferycznym: badania pilotażowe w wybranym receptorze centralnej Polski. In: Energetyka i ochrona środowiska – współczesne rozwiązania i perspektywy na przyszłość. Wydawnictwo Naukowe TYGIEL, 145–163.
  • 17. Majewski, G., Rogula-Kozłowska, W. 2016. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: first results from the short-term winter campaign. Theoretical and Applied Climatology, 125, 79–92.
  • 18. Moore, K., Polidori, A., Sioutas, C. 2011. Toxicological Assessment of Particulate Emissions from the Exhaust of Old and New Model Heavy- and Light-Duty Vehicles. This research was sponsored by the U.S. Department of Transportation.
  • 19. Pant, P., Harrison, R.M. 2013. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric Environment.
  • 20. Penkała, M., Ogrodnik, P., Rogula-Kozłowska, W. 2018. Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control. Environments, 5, 9.
  • 21. Pernigotti, D., Belis, C.A., Spanó, L. 2016. SPECIEUROPE: The European data base for PM source profiles. Atmospheric Pollution Research.
  • 22. Pervez, S., Bano, S., Watson, J.G., Chow, J.C., Matawle, J.L., Shrivastava, A., Tiwari, S., Pervez, Y.F. 2018. Source Profiles for PM10–2.5 Resuspended Dust and Vehicle Exhaust Emissions in Central India. Aerosol and Air Quality Research, 18, 1660–1672.
  • 23. Pokorná, P., Hovorka, J., Hopke, P.K. 2016. Elemental composition and source identification of very fine aerosol particles in a European air pollution hot-spot. Atmospheric Pollution Research.
  • 24. Qu, M., Wang, Y., Huang, B., Zhao, Y. 2018. Source apportionment of soil heavy metals using robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR) receptor model. Science of The Total Environment, 626, 203–210.
  • 25. Reimann, C., Caritat, P. de. 2000. Intrinsic Flaws of Element Enrichment Factors (EFs) in Environmental Geochemistry. Environmental Science & Technology, 34, 5084–5091.
  • 26. Rodriguez, S., Querol, X., Alastuey, A., Viana, M., Alarcon, M., Mantilla, E., Ruiz, C. 2004. Comparative PM10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Science of The Total Environment, 328, 95–113.
  • 27. Rogula-Kozłowska, W., Błaszczak, B., Szopa, S., Klejnowski, K., Sówka, I., Zwoździak, A., Jabłońska, M., Mathews, B. 2013. PM2.5 in the central part of Upper Silesia, Poland: Concentrations, elemental composition, and mobility of components. Environmental Monitoring and Assessment.
  • 28. Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P., Mathews, B., Szopa, S. 2012. A Study on the Seasonal Mass Closure of Ambient Fine and Coarse Dusts in Zabrze, Poland. Bulletin of Environmental Contamination and Toxicology, 88, 722–729.
  • 29. Rogula-Kozłowska, W., Majewski, G., Błaszczak, B., Klejnowski, K., Rogula-Kopiec, P. 2016. Origin-oriented elemental profile of fine ambient particulate matter in central European suburban conditions. International Journal of Environmental Research and Public Health, 13.
  • 30. Rogula-Kozłowska, W., Majewski, G., Czechowski, P.O. 2015. The size distribution and origin of elements bound to ambient particles: a case study of a Polish urban area. Environmental Monitoring and Assessment.
  • 31. Rybak, J., Wróbel, M., Bihalowicz, J.S., Rogula-Kozlowska, W. 2020. Selected metals in Urban road dust: Upper and lower silesia case study. Atmosphere, 11, 290.
  • 32. Samek, L., Gdowik, A., Ogarek, J., Furman, L. 2016. Elemental composition and rough source apportionment of fine particulate matter in air in Cracow, Poland. Environment Protection Engineering.
  • 33. Sternbeck, J., Sjödin, Å., Andréasson, K. 2002. Metal emissions from road traffic and the influence of resuspension – Results from two tunnel studies. Atmospheric Environment.
  • 34. Stojanowska, A., Mach, T., Olszowski, T., Bihałowicz, J.S., Górka, M., Rybak, J., Rajfur, M., Świsłowski, P. 2021. Air Pollution Research Based on Spider Web and Parallel Continuous Particulate Monitoring–A Comparison Study Coupled with Identification of Sources. Minerals, 11, 812.
  • 35. Stojanowska, A., Rybak, J., Bożym, M., Olszowski, T., Bihałowicz, J.S. 2020. Spider Webs and Lichens as Bioindicators of Heavy Metals: A Comparison Study in the Vicinity of a Copper Smelter (Poland). Sustainability, 12, 8066.
  • 36. Yang, H.-H., Gupta, S. K., Dhital, N. B., Lee, K.-T., Hsieh, Y.-S., Huang, S.-C. 2019. Establishment of Indicatory Metals for Filterable and Condensable PM2.5 Emitted from Important Stationary Emission Sources. Energy & Fuels, 33, 10878–10887.
  • 37. Yongming, H., Peixuan, D., Junji, C., Posmentier, E. 2006. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of The Total Environment, 355, 176–186.
  • 38. ZEC Wołomin. 2022. System ciepłowniczy – ZEC Wołomin.
  • 39. Zhu, Y., Huang, L., Li, J., Ying, Q., Zhang, H., Liu, X., Liao, H., Li, N., Liu, Z., Mao, Y., Fang, H., & Hu, J. 2018. Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environment International. Elsevier Ltd.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-189a444b-82c7-4bb7-b9de-74177fe5eac1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.