Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
We investigate the evanescent field of a microfiber wrapped by colloidal crystals. The microfiber has the diameter of about 1 μm that is drawn from a single-mode fiber with an alcohol lamp. The colloidal spheres are further attached to the microfiber through thermal evaporation, then they self-assemble to crystal-like structures. The 400 nm, 590 nm, and 710 nm-diameter SiO2 colloidal spheres are used, respectively. The spectral responses are studied theoretically and experimentally, and the results agree with each other. It is revealed that the evanescent field of a microfiber could be modulated by the photonic band-gap of colloidal crystals. This characteristic is very useful in refractive index sensing for liquids.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
309--315
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
autor
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- College of Physics and Engineering, Henan University of Science and Engineering, Luoyang Key Laboratory of Photoelectric Materials, Luoyang 471003, China
autor
- College of Physics and Engineering, Henan University of Science and Engineering, Luoyang Key Laboratory of Photoelectric Materials, Luoyang 471003, China
autor
- College of Physics and Engineering, Henan University of Science and Engineering, Luoyang Key Laboratory of Photoelectric Materials, Luoyang 471003, China
autor
- College of Physics and Engineering, Henan University of Science and Engineering, Luoyang Key Laboratory of Photoelectric Materials, Luoyang 471003, China
autor
- College of Physics and Engineering, Henan University of Science and Engineering, Luoyang Key Laboratory of Photoelectric Materials, Luoyang 471003, China
autor
- College of Physics and Engineering, Henan University of Science and Engineering, Luoyang Key Laboratory of Photoelectric Materials, Luoyang 471003, China
autor
- College of Physics and Engineering, Henan University of Science and Engineering, Luoyang Key Laboratory of Photoelectric Materials, Luoyang 471003, China
Bibliografia
- [1] VETSCH E., REITZ D., SAGUÉ G., SCHMIDT R., DAWKINS S.T., RAUSCHENBEUTEL A., Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber, Physical Review Letters 104(20), 2010, article 203603.
- [2] YONG-WON SONG, SUNG-YEON JANG, WON-SUK HAN, MI-KYUNG BAE, Graphene mode-lockers for fiber lasers functioned with evanescent field interaction, Applied Physics Letters 96(5), 2010, article 051122.
- [3] KHAING OO, MAUNG KYAW, YUN HAN, KANKA J., SUKHISHVILI S., DU H., Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy, Optics Letters 35(4), 2010, pp. 466–468.
- [4] SHENGLI PU, XIANFENG CHEN, YUPING CHEN, YONGHAO XU, WEIJUN LIAO, LIJUN CHEN, YUXING XIA, Fiber-optic evanescent field modulator using a magnetic fluid as the cladding, Journal of Applied Physics 99(9), 2006, article 093516.
- [5] FENG C., KHULBE K.C., MATSUURA T., TABE S., ISMAIL A.F., Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment, Separation and Purification Technology 102, 2013, pp. 118–135.
- [6] BRAMBILLA G., FEI XU, HORAK P., YONGMIN JUNG, KOIZUMI F., SESSIONS N.P., KOUKHARENKO E., XIAN FENG, MURUGAN G.S., WILKINSON J.S., RICHARDSON D.J., Optical fiber nanowires and microwires: fabrication and applications, Advances in Optics and Photonics 1(1), 2009, pp. 107–161.
- [7] FEI XU, BRAMBILLA G., Demonstration of a refractometric sensor based on optical micro-fiber coil resonator, Applied Physics Letters 92(10), 2008, article 101126.
- [8] LUCHANSKY M.S., WASHBURN A.L., MARTIN T.A., IQBAL M., GUNN L.C., BAILEY R.C., Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform, Biosensors and Bioelectronics 26(4), 2010, pp. 1283–1291.
- [9] SCHMID J.H., SINCLAIR W., GARCÍA J., JANZ S., LAPOINTE J., POITRAS D., LI Y., MISCHKI T., LOPINSKI G., CHEBEN P., DELÂGE A., DENSMORE A., WALDRON P., XU D.-X., Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing, Optics Express 17(20), 2009, pp. 18371–18380.
- [10] LIN Y., HERMAN P.R., VALDIVIA C.E., LI J., KITAEV V., OZIN G.A., Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber, Applied Physics Letters 86(12), 2005, article 121106.
- [11] HAITAO YAN, MING WANG, YIXIAN GE, PING YU, Colloidal crystals self-assembled on the end face of fiber: fabrication and characterizations, Optical Fiber Technology 15(3), 2009, pp. 324–327.
- [12] JUN HYUK MOON, GI-RA YI, SEUNG-MAN YANG, Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas, Journal of Colloid and Interface Science 287(1), 2005, pp. 173–177.
- [13] JIANZHAO LI, HEMAN P., VALDIVIA C., KITAEV V., OZIN G., Colloidal photonic crystal cladded optical fibers: towards a new type of photonic band gap fiber, Optics Express 13(17), 2005, pp. 6454–6459.
- [14] YAN H., ZHAO X., QIAO C., ZHEN Z., XIONG G., LI Q., WANG W., HAN D., A colloidal crystal microstructure fiber: fabrication and characterization, Applied Physics B 107(1), 2012, pp. 91–95.
- [15] ZHIFENG LIU, JING YA, YING XIN, JIANLI MA, CAILOU ZHOU, Assembly of polystyrene colloidal crystal templates by a dip-drawing method, Journal Crystal Growth 297(1), 2006, pp. 223–227.
- [16] SANG-MAE LEE, SAINI S.S., MYUNG-YUNG JEONG, Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors, IEEE Photonics Technology Letters 22(19), 2010, pp. 1431–1433.
- [17] WHITE I.M., XUDONG FAN, On the performance quantification of resonant refractive index sensors, Optics Express 16(2),2008, pp. 1020–1028.
- [18] TAO WEI, YUKUN HAN, YANJUN LI, HAI-LUNG TSAI, HAI XIAO, Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement, Optics Express 16(8), 2008, pp. 5764–5769.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-189476a3-0f8b-42e9-8719-29e05071cc61