PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte Carlo characterization of the gold nanoparticles dose enhancement and estimation of the physical interactions weight in dose enhancement mechanism

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Radiosensitization of the cancer cells by the heavy atoms of nanoparticles was the subject of some studies. But, the physical characterization to determine the weight of all interactions hasn’t been made numerically. The aim of this study was to calculate and compare the dose enhancement (DE) for different energies. The Monte Carlo simulation method was used in the current study. The influence of gold nanoparticles (GNP) size, beam quality, the GNP concentration, and dose inhomogeneity on the radiosensitization by DE was studied. A 35% increase in the photoelectric effect was observed while energy decreased from 18 MV to 300 kV. In the microscopic study which DE calculated in 30 μm from a single GNP, a 79% decreasing in DE within the first 1μm was seen and it declined to 2% in 30 μm from the GNP center. The effect was observed at small distances only. Our study revealed that the dose inhomogeneity around a nanoparticle is the main and very strong effect of DE on a macroscopic scale. In the location which 35% DE occurs most malignant cells survival will be effectively reduced. Our research indicates the need for further research.
Słowa kluczowe
Rocznik
Strony
217--223
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Radiation Oncology Department, Shaid Madani Hospital. Tabriz, Iran
  • Medical Radiation Sciences Research Team, Imam Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
  • Radiation Oncology Department, Shaid Madani Hospital. Tabriz, Iran
  • Medical Radiation Sciences Research Team, Imam Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
Bibliografia
  • 1. Mesbahi A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Pract Oncol Radiother. 2010;15(6):176-180.
  • 2. Qian X, Peng X-H, Ansari DO, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26(1):83-90.
  • 3. Leung MK, Chow JCL, Chithrani BD, et al. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys. 2011;38(2):624-631.
  • 4. Zaman RT, Diagaradjane P, Wang J, et al. In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics. 2007;14(6):1715-1720.
  • 5. Jeynes JC, Merchant MJ, Spindler A, et al. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Phys Med Biol. 2014;59(21):6431-6434.
  • 6. Tsiamas P, Mishra P, Cifter F, et al. Low-Z linac targets for low-MV gold nanoparticle radiation therapy. Med Phys. 2014;41(2):021701. doi: 10.1118/1.4859335
  • 7. Zygmanski P, Liu B, Tsiamas P, et al. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Phys Med Biol. 2013;58(22):7961-7977.
  • 8. McMahon SJ, Hyland WB, Muir MF, et al. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother Oncol. 2011;100(3):342-347.
  • 9. Zhang S, Li J, Lykotrafitis G, et al. Size-dependent endocytosis of nanoparticles. Adv Mater. 2009;21(4):419-424.
  • 10. Douglass M, Bezak E, Penfold S. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med Phys. 2013;40(7):071710. doi: 10.1118/1.4808150
  • 11 Jones BL, Krishnan S, Cho SH. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys. 2010;37(3):3809-3816.
  • 12. Xiao QF, Zheng XP, Bu WB, Ge et al. A Core/Satellite Multifunctional Nanotheranostic for in Vivo Imaging and Tumor Eradication by Radiation/Photothermal Synergistic Therapy. J Am Chem Soc. 2013;135(35):13041-13048.
  • 13. Ghasemi-Jangjoo A, Ghiasi H. Monte Carlo study on the gold and gadolinium nanoparticles radiosensitizer effect in the prostate 125I seeds radiotherapy. Pol J Med Phys Eng. 2019;25(3):165-169
  • 14. Wen L, Chen L, Zheng SM, et al. Ultrasmall Biocompatible WO3-x Nanodots for Multi-Modality Imaging and Combined Therapy of Cancers. Adv Mater. 2016;28(25):5072-5079.
  • 15. McKinnon S, Guatelli S, Incerti S, et al. Local dose enhancement of proton therapy by ceramic oxide nanoparticles investigated with Geant4 simulations. Phys Medica. 2016;32(12):1584-1593.
  • 16. Taggart LE, McMahon SJ, Butterworth KT, et al. Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology. 2016;27(21):215101.
  • 17. Jain S, Coulter JA, Hounsell AR, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys. 2011;79(2):531-539.
  • 18. Butterworth KT, McMahon SJ, Taggart LE, Prise KM. Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl Cancer Res. 2013;2(4):269-279.
  • 19. Du FY, Zhang LR, Zhang L, et al. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials. 2017;121:109-120.
  • 20. Ghasemi JA, Ghiasi H, Mesbahi A. A Monte Carlo study on the radio-sensitization effect of gold nanoparticles in brachytherapy of prostate by 103Pd seeds. Pol J Med Phys Eng. 2019;25(2):87-93.
  • 21. Xie WZ, Friedland WF, Li WB, et al. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Phys Med Biol. 2015;60(16):6195-6212.
  • 22. Mi P, Dewi N, Yanagie H, et al. Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy. ACS Nano. 2015;9(6):5913-5921.
  • 23. Dewi N, Mi P, Yanagie H, et al. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. J Cancer Res Clin Oncol. 2016;142(4):767-775.
  • 24. Le Duc G, Miladi I, Alric C, et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano. 2011;5(12):9566-9574.
  • 25. Bridot J-L, Dayde D, Rivière C, et al. Hybrid gadolinium oxide nanoparticles combining imaging and therapy. J Mater Chem. 2009;19:2328-2335.
  • 26. Seo S-J, Han S-M, Cho J-H, et al. Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core–inner-shell excitation by proton or monochromatic X-ray irradiation: implication of the contribution from the interatomic deexcitation-mediated nanoradiator effect to dose enhancement. Radiat Environ Bioph. 2015;54:423-431.
  • 27. Mignot A, Truillet C, Lux F, et al. A Top‐Down synthesis route to ultrasmall multifunctional Gd‐Based silica nanoparticles for theranostic applications. Chem - Eur J. 2013;19:6122-6136.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-188a6404-d038-47df-8d0b-6c2e7cef1f4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.