PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Peculiarities of the Primary Process of the Soil Formation on the Mine Rock Dumps under the Influence of Biotic Factors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Open pit coal mining is a global problem, because mines occupy large areas that completely change the relief, dramatically affect ecosystems, as a result of which they lose most of their functions, and a significant part of the fertile soil degrades and becomes unsuitable for agricultural activities. In the presented work, the initial stage of soil formation was studied, the parameters of the granulometric composition of uneven-aged rocks of Donbas mine dumps, their nutritional regime, and the species composition of soil algae were studied. Samples were taken from three different-aged rock dumps of the mines: "South-Donbaska - 3" (rock storage for 40 years); "South-Donbaska - 1" (storage of rock for 52 years), "Trudovska No5 - bis (storage of rock for more than 100 years). The agrochemical parameters of the rock were determined in the samples: pHwater, humus, nitrate nitrogen, mobile phosphorus, exchangeable potassium, particle size distribution. The determination of granulometric fractions of 0–20 cm layer of rock dumps of the mines shows, along with the age, a potential increase of the dump of fine fractions and a decrease in the fraction of stones from 83% in the dump of the South-Donbaska mine, and by 30 to 64.7% in the dump of the Trudovska No. 5-bis. The proportion of the clay fraction is not high in all dumps and it does not exceed 1%, but its appearance indicates the initial stage of a soil structure formation. Soil formation begins with the colonization of mineral rocks with soil algae. The species composition of soil algae, the quantitative accounting were determined by microscopy of a freshly selected soil sample and by cultural methods. Algae species were determined by determinants. In the rock dump, the structure of algal groups becomes more similar to, their structure in the background soils of the territory. The dominance of the representatives of Chlorophyta and Cyanophyta in the rock indicates the steppe process of soil formation. The data obtained contribute to the expansion of the ecological and biological understanding of the initial stages of the formation of soil cenoses.
Rocznik
Strony
101--108
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Geroiv Oboroni Str. 15, 03041 Kyiv, Ukraine
  • Uman National University of Horticulture 20301, Institutskaya Str., 1, Uman, Cherkasy region, Ukraine
  • Uman National University of Horticulture 20301, Institutskaya Str., 1, Uman, Cherkasy region, Ukraine
  • Pavlo Tychyna Uman State Pedagogical University, Sadova 2 Str, Uman, 20300, Ukraine
  • Uman National University of Horticulture 20301, Institutskaya Str., 1, Uman, Cherkasy region, Ukraine
autor
  • Pavlo Tychyna Uman State Pedagogical University, Sadova 2 Str, Uman, 20300, Ukraine
autor
  • National University of Life and Environmental Sciences of Ukraine, Geroiv Oboroni Str. 15, 03041 Kyiv, Ukraine
  • Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, Kyiv 01601, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Geroiv Oboroni Str. 15, 03041 Kyiv, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Geroiv Oboroni Str. 15, 03041 Kyiv, Ukraine
Bibliografia
  • 1. Andreeva, V.M. 1998. Soil and aerophilic green algae (Chlorophyta: Tetraporales, Chlorococcales, Chlorosarcinals). St. Petersburg, Nauka, 4, 23–29. (in Russian)
  • 2. Borchhardt, N., Baum, C., Mikhailyuk, T., Karsten, U. 2017. Biological Soil Crusts of Arctic Svalbard – Water Availability as Potential Controlling Factor for Microalgal Biodiversity Front. Microbiol., 8, 1–12. https://doi.org/10.3389/fmicb.2017.01485
  • 3. Buchinskiy, I.E. 1963. Climate of Ukraine in the past, present and future. K.: Gosselhozizdat, 308. (in Russian)
  • 4. Buligin, S.Yu., Vitvickij, S.V., Kucher, L.I., Antonyuk, D.A., Chajka, M.I. 2020. Bioindication of ˮzero-momentˮ of soil formation. Balanced nature management, 3, 127–135. https://doi.org/10.33730/2310-4678.3.2020.212606
  • 5. Chaika, M., Maltseva, I. 2013. Structure and ecological features of algae flora of rocky soils of coal heaps of Donetsk region. Bulletin of Lviv University. The series is geographical, 44, 379–387. (in Ukrainian) http://dx.doi.org/10.30970/vgg.2013.44.1246
  • 6. Chubuk, N.N. 2005. Ecological characteristics of soil algae communities of urban ecosystems: Proceedings of the III International Conferenceˮ Actual problems of modern algology. Kharkov, 177–178. (in Russian)
  • 7. Gayko, G., Biletskiy, V., Mikos, T., Hmura, Ya.2009. Mining and underground structures in Ukraine and Poland (essays on history). Donetsk, 146–147.
  • 8. Eldridge, D.J. 2003. Biological soil crusts and water relations in Australian Deserts. Biological soil crusts: Structure, function, and management. Ecological Studies, 150, 315–325. https://doi.org/10.1007/978-3-642-56475-8_23
  • 9. Evans, R.D., Lange, O.L. 2001. Biological soil crusts and ecosystem nitrogen and carbon dynamics. Biological soil crusts: Structure, function, and management. Ecological Studies, 150, 263–279. https://doi.org/10.1007/978-3-642-56475-8_20
  • 10. France, J., Thornley, J.H.M. 1984. Mathematical models in agriculture. London: Butterworths: 335.
  • 11. Pathak, J., Ahmed, H., Singh, P.R., Singh, S.P., Häder, D.P., Sinha R.P. 2019. Mechanisms of Photoprotection in Cyanobacteria Cyanobacteria From Basic Science to Applications, 7, 145–171. https://doi.org/10.1016/B978-0-12-814667-5.00007-6
  • 12. Jayne Belnap, Kimball T. Harper & Steven D. Warren. 1994. Surface disturbance of cryptobiotic soil crusts: Nitrogenase activity, chlorophyll content, and chlorophyll degradation. Arid Soil Research and Rehabilitation, 8(1), 1–8. https://doi.org/10.1080/15324989309381373
  • 13. Kabirov, R.R. 1997. Participation of soil algae in the processes of vegetation formation on the dumps of the Kansk-Achinsk coal field (KATEK). Ecology, 3, 218–228. (in Russian)
  • 14. Kabirov, R.R., Gaysina, L.A. 2009. Indicators of soil algae productivity in terrestrial ecosystems. Pochvovedenie. M.: Nauka, 9, 1475–1480. (in Russian) https://www.researchgate.net/publication/272375903_Kabirov_RR_Gajsina_LA_Pokazateli_produktivnosti_pocvennyh_vodoroslej_v_nazemnyh_ekosistemah_Pocvovedenie_2009_No_12_S_1475-1480
  • 15. Karpenko, V.P., Poltoretskyi, S.P., Liubych, V.V., Adamenko, D.М., Kravets, І.S., Prytuliak, R.М., Kravchenko, V.S., Patyka, N.I., Patyka, V.P. 2021. Microbiota in the rhizosphere of cereal crops. Microbiol. Journal, 83(1), 21–31. https://doi.org/10.15407/microbiolj83.01.021
  • 16. Kravchenko, Y.S., Zhang, X., Song, C., Hu, W., Yarosh, A.V., Voitsekhivska, O.V. 2022. Seasonal Dynamics of Organic Carbon and Nitrogen in Biomasses of Microorganisms in Arable Mollisols Affected by Different Tillage Systems. Land, 11, 486. https://doi.org/10.3390/land11040486
  • 17. Kondratieva, N.V. 1968. Blue-green algae. - Syanophyta. Part 2. Hormogoniopheceae class. Determinant of freshwater algae of the Ukrainian SSR. 1. K.: Naukova dumka. (in Ukrainian)
  • 18. Kondratieva, N.V., Kovalenko, O.V., Prykhodkova, L.P. 1984. Blue-green algae. - Cyanophyta. Part 1. Class chrococci - Chroococcophyceae. Class hamesifon – Chamaesiphonophyceae. Determinant of freshwater algae of the Ukrainian SSR. K.: Naukova dumka. (in Ukrainian)
  • 19. Kostikov, I.I., Romanenko, P.O., Demchenko, E.M. 2001. Algae of soils of Ukraine (history and research methods, system, summary of flora). K.: Fitosotsiol. tsentr, 125. (in Ukrainian)
  • 20. Kupriyanov, A.N., Morsakova, Yu.V. 2006. Natural overgrowth of Kuzbass dumps. Bulletin of Kuzbass Technical University, 3, 48–51. (in Russian)
  • 21. Xue, L., Zhang Y., Zhang, T., An, L., Wang, X. 2005. Effects of Enhanced Ultraviolet-B Radiation on Algae and Cyanobacteria. Critical Reviews in Microbiology, 31(2), 79–89. https://doi.org/10.1080/10408410590921727
  • 22. Lisiecki, F.N., Goleusov, P.V., Kuharuk, N.S., Chepelev, O.A. 2007. Ecological aspects of soil and vegetation reproduction in landscapes disturbed by the mining industry. Electronic scientific journal ˮInvestigated in Russiaˮ: 2233–2250. (in Russian). http://zhurnal.ape.relarn.ru/articles/2005/217.pdf
  • 23. Matviienko, O.M., Dohadina, T.V. 1978. Yellowgreen algae Xantophyta (Determinant of freshwater algae of the Ukrainian SSR). 10. K.: Naukova dumka. (in Ukrainian)
  • 24. Medvedev, V.V., Laktionova, T.N. 2011. Granulometric composition of soils of Ukraine (genetic, ecological and agronomic aspects). Harkov: Apostrof, 224. (in Russian)
  • 25. Moklyachuk, L., Yatsuk, I., Draga, M. 2015. Monitoring study of Soil Fertility in the Agricultural Area of Rivne Region of Ukraine. Emirates Journal of Food and Agriculture, 27(2), 221–230.
  • 26. Moshkova, N.A., Gollerbah, M.M. 1986. Green algae. Class Ulotrix. Order Ulotrix: Chlorophyta, Ulotrichophyceae, Ulotrichales. Determinant of freshwater algae of the USSR, 10. L.: Nauka. (in Russian)
  • 27. Negrutskiy, S.F. 1990. Physiology and biochemistry of lower plants. K.: Vischa shkola. (in Russian)
  • 28. Olkhovych, O.O., Hrechyshkina, S.V., Panyuta, O.O., Taran, N.Yu., Ivannikov, R.V. 2022. Secondary metabolites of pleustophytes as markers of resistance to metal nanoparticles. Hydrobiological Journalthis link is disabled, 58(2), 48–56.
  • 29. Parfeniuk, A., Mineralova, V., Beznosko, I., Lishchuk, A., Borodai, V., Krut, V. 2020. Mycobiota of the rhizosphere of raspberry plants (Rubus idaeus L.) under the influence of varieties and new fertilizers in conditions of organic production. Agronomy Research, 18(3). https://doi.org/10.15159/ar.20.182
  • 30. Prihodkova, L.P. 1992. Blue-green algae of the steppe zone of Ukraine. Kiev: Naukova dumka, 218. (in Russian)
  • 31. Rahmonov, O., Szymczyk, A. 2010. Relations between vegetation and soil in initial succession phases inpost-sand excavations. Ecology, 29(4), 412–429. https://doi.org/10.4149/ekol_2010_04_412
  • 32. Safonova, H.S., Reva, S.V. 2009. Settlement of iron ore dumps of Kryvbas by higher plants. Bulletin of Dnipropetrovsk University. Biology. Ecology., 17(20), 87–94. (in Ukrainian). http://oaji.net/articles/2014/773-1400614201.pdf
  • 33. Scherbina, V.V., Maltseva, I.A. 2012. Changes in the biodiversity of blue-green algae under conditions of anthropogenic impact. Ecosystems, their optimization and protection, 7, 270–274. (in Russian) https://cyberleninka.ru/article/n/izmenenie-bioraznoobraziya-sinezelenyh-vodorosley-v-usloviyahantropogennogo-vozdeystviya
  • 34. Schulz, K., Mikhailyuk, T., Dreßler, M., Leinweber, P., Karsten, U. 2016. Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties. Microbial Ecology, 7(1), 178–193. https://doi.org/10.1007/s00248-015-0691-7
  • 35. Shtina, E.A., Neganova, L.B., Shushueva, M.G., Lanina, R.I. 1978. Tasks and methods of studying algae growing on industrial dumps. Programma i metodika izucheniya tehnogennyih biogeotsenozov; M.: Nauka, 73–88. (in Russian)
  • 36. Shtina, E.A., Gollerbakh, M.M. 1976. Ecology of soil algae. M.: Nauka, 236. (in Russian)
  • 37. Shushueva, M.G. 1988. Dynamics of soil algae biomass in forest reclamation ecosystems of the southern Kuzbass. Botanical journal, 73, 1417–1423. (in Russian)
  • 38. Skivka, L.M., Hudz, S.O., Prysiazhniuk, O.I., Svystunova, I.V., Voitsekhivska O.V., Poltoretskyi S.P., Belava, V.N. 2020. Enzymatic activity of soil microbiota under different fertilizer systems. Eurasian Journal of Biosciences, 14(2), 6113–6118.
  • 39. Sokolov, D.A., Androhanov, V.A., Kulizhskij, S.P., Domozhakova E.A., Lojko, S.V. 2015. Morphogenetic diagnostics of soil formation processes on dumps of coal sections of Siberia. Soil Science, 1, 106–117. (in Russian) https://doi.org/10.7868/S0032180X15010153
  • 40. Sonko, S., Sukhanova, I., Vasylenko, O., Nikitina, O. 2018. Concept of environmentally protective farming for the forest-steppe zone. Visnyk of V.N. Karazin Kharkiv national university – series geoecology, geology, ecology, 48, 161–172. https://doi.org/10.26565/2410-7360-2018-48-14
  • 41. Sonko, S., Maksymenko, N., Vasylenko, O., Chornomorets, V., Koval, I. 2021. Biodiversity and landscape diversity as indicators of sustainable development. E3S Web of Conferences 2021, 255, 01046. https://doi.org/10.1051/e3sconf/202125501046
  • 42. Striganova, B.R. 1980. Nutrition of soil saprophages. M.: Nauka. (in Russian)
  • 43. Tarchevskiy, V.V., Shtina, E.A. 1967. Development of algae on industrial dumps. Current state and prospects of studying soil algae in the USSR: proceedings of an interuniversity conference. Kirov, 146–150. (in Russian)
  • 44. Tomakov, P.I. 1994. Ecology and nature protection in opencast mining. M.: MGU. 236. (in Russian).
  • 45. West, N.E. 1990. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in Ecological Research, 20, 197–223. https://doi.org/10.1016/s0065-2504(08)60055-0
  • 46. Zubov, A.O. 2019. Ecological danger of waste coal heaps in agrolandscapes. Аgroecological journal, 12, 34–45. (in Ukrainian) https://doi.org/10.33730/2077-4893.2.2019.174013
  • 47. Zubova, L.G., Zubov, A.R., Vereh-Belousova, K.I., Olejnik, N.V 2012. Obtaining metals from heaps of coal mines of Donbass: a monograph. Luhansk: East Ukrainian National University V. Dalya. (in Russian)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1889e637-b885-4c4a-9df8-5ebc23137cff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.