PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shock heterogeneity and shock history of the recently found ordinary Csátalja chondrite in Hungary

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shock impact-produced mineral alterations in two thin sections of the recently found Csátalja H4 ordinary chondrite meteorite are compared. Peak positions of Raman and infrared spectra of mineral clasts show peaks shifted in wavenumber relative to unshocked reference minerals, and both peak shifts and FWHM values seem to correlate to each other. In the less shocked thin section (Csátalja-1) a more monomineralic and homogeneous composition indicate shock pressures of <15 GPa, while the more shocked Csátalja-2 indicates shock pressure in the 15–17 GPa range. The highest identified infrared peak position shifts range between –48 and +28 cm–1 with peak broadening between 60–84 cm–1 in the case of the feldspars, which, together with sulphide globules, were produced by the shock itself. Feldspar spectra could be detected only by FTIR spectroscopy, but in most cases (above the S3 shock level) the mixed type of the pyroxene-feldspar spectra (both peaks in the same spectra) is in agreement with the shock-produced secondary feldspars. These grains are located around crystalline borders, and probably formed by selective melting, due to shock annealing. In reconstruction of the shock history, an early fragmentation by a lower shock effect and a later increased shock level-related vein and melt pocket formation occurred, with subsequent shock annealing; temporal reconstruction of the shock event is possible only in part. The joint usage of Raman and infrared spectroscopy provided useful insights into the shock-produced changes and their spatial inhomogeneity, while shocked feldspar could be better detected by infrared than by the Raman method.
Rocznik
Strony
433--446
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklos Astronomical Institute, H-1121 Budapest, Konkoly Thege Miklós út 15-17, Hungary
autor
  • University of Szeged, Vulcano Petrology and Geochemistry Research Group, Department of Mineralogy, Geochemistry and Petrology, Hungary
autor
  • Research Centre for Astronomy and Earth Sciences, Institute for Geological and Geochemical Research, Hungary
autor
  • International Meteorite Collectors Association (IMCA#6251)
autor
  • Research Centre for Astronomy and Earth Sciences, Institute for Geological and Geochemical Research, Hungary
autor
  • Research Centre for Astronomy and Earth Sciences, Geographical Institute, Hungary
  • Eötvös Loránd University, Department of Environmental and Landscape Geography, Hungary
autor
  • University of Szeged, Vulcano Petrology and Geochemistry Research Group, Department of Mineralogy, Geochemistry and Petrology, Hungary
Bibliografia
  • 1. Basavaiah, N., Shriram, C.R., 2013. Spectral changes with the direction of asteroid impact at Lonar crater, India: findings from Mid-IR DRIFT analysis. EGU General Assembly, abstract EGU2013-7681.
  • 2. Beck, P., Gillet, P., El Goresy, A., Mostefaoui, S., 2005. Timescales of shock processes in chondritic and martian meteorites. Nature, 435: 1071-1074.
  • 3. Borucki, J., Stępniewski, M., 2001. Mineralogy of the Baszkówka chondrite (L5 S1): new data on silicates, opaques and minor minerals. Geological Quarterly, 45 (3): 229-255.
  • 4. Borucki, J., Giro, L., Orłowski, R., Stępniewski, M., 2009. The Songyuan ordinary chondrite (China) - rich in alien rock fragments and its reclassification. Geological Quarterly, 53 (2): 187-198.
  • 5. Chemtob, S.M., Glotch, T.D., Rossman, G.R., 2010. ATR-IR spectroscopy for in situ mineral analysis on planetary surfaces: steps toward a forward model. 41th Lunar and Planetary Science Conference, abstract 2198.
  • 6. Chen, M., El Goresy, A., Gillet, P., 2004. Ringwoodite lamellae in olivine: clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs. Proceedings of the National Academy of Sciences of the United States of America, 101: 15033-15037.
  • 7. De Benedetto, G.E., Laviano, R., Sabbatini, L., Zambonin, P.G., 2002. Infrared spectroscopy in the mineralogical characterization of ancient pottery. Journal of Cultural Heritage, 3: 177-186.
  • 8. Doménech-Carbó, M.T., de Agredos-Pascual, M.L.V., Osete-Cortina, L., Doménech-Carbó, A., Guasch-Ferré, N., Manzanilla, L.R., Vidal-Lorenzo, C., 2012. Characterization of prehispanic cosmetics found in a burial of the ancient city of Teotihuacan (Mexico). Journal of Archaeological Science, 39: 1043-1062.
  • 9. Downs, R.T., 2006. The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. 19th General Meeting of the International Mineralogical Association in Kobe, Japan, abstract no. O03-13.
  • 10. Ferguson, P., 2010. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy Analysis of Pulsed Electron Deposited Silicon Dioxide Film on Silicon Substrate (Doctoral dissertation, Texas State University-San Marcos), pp. 75.
  • 11. Fintor, K., Park, C., Nagy, Sz., Pál-Molnár, E., Krot, A. 2014. Hydrothermal origin of hexagonal CaAl2Si2Os (dmisteinbergite) in a compact type A CAI from the Northwest Africa 2086 CV3 chondrite. Meteoritics and Planetary Sciences, 49: 812-823.
  • 12. Foster, N.F., Wozniakiewicz, P.J., Price, M.C., Kearsley, A.T., Burchell, M.J., 2013. Identification by Raman spectroscopy of Mg-Fe content of olivine samples after impact at 6 kms-1 onto aluminium foil and aerogel: in the laboratory and in Wild-2 cometary samples. Geochimica et Cosmochimica Acta, 121: 1-14.
  • 13. Freeman, J.J., Wang, A., Kuebler, K.E., Jolliff, B.L., Haskin, L.A., 2008. Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. The Canadian Mineralogist, 46: 1477-1500.
  • 14. Fritz, J., Greshake, A., Stöffler, D., 2005. Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: evidence of progressive shock metamorphism. Antarctic Meteorite Research, 18: 96.
  • 15. Gyollai, I., Gucsik, A., Nagy, S., Bérczi, S., 2012. Petrographic and mid-infrared spectroscopy study of shocked feldspar in the Asuka-881757 Lunar gabbro meteorite sample. Central European Geology, 55: 23-32.
  • 16. Hałas, S., Wójtowicz, A., 2001. K/Ar dating and stable isotope analysis of the Baszkówka and Mt. Tazerzait L5 chondrites. Geological Quarterly, 45 (3): 315-317.
  • 17. Huang, E., Chen, C.H., Huang, T., Lin, E.H., Xu, J.A., 2000. Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. American Mineralogist: 473-479.
  • 18. Johnston, C.T., Premachandra, G.S., 2001. Polarized ATR-FTIR study of smectite in aqueous suspension. Langmuir, 17: 3712-3718.
  • 19. Kereszturi, A., Gyollai, I., Szabó, M., 2015. Case study of chondrule alteration with IR spectroscopy in NWA 2086 CV3 meteorite. Planetary and Space Science, 106: 122-131.
  • 20. Koizumi, E., Mikouchi, T., Monkawa, A., Kurihara, T., Miyamoto, M., 2010. Micro FT/IR Analysis of Brown Olivines in Martian Meteorites. 41st Lunar and Planetary Science Conference, abstract 1575.
  • 21. Kovács, I., Udvardi, B., Falus, Gy., Földvári, M., Fancsik, T., Kónya, P., Bodor, E.R., Mihály, J., Németh, Cs., Czirják, G., Ősi, A., Vargáné Barna, Zs., Bhattoa, H.P., Szekanecz, Z., Turza, S., 2015a. Practical - especially Earth science - applications of ATR FTIR spectrometry through some case studies (in Hungarian with English summary). Földtani Közlöny, 145: 173-192.
  • 22. Kovács, J., Sajó, I., Márton, Z., Jáger, V., Hegedüs, T., Berecz, T., Tóth, T., Gyenizse, P., Podobni, A., 2015b. Csátalja, the largest H4-5 chondrite from Hungary. Planetary and Space Science, 105: 94.
  • 24. Kuebler, K.E., Jolliff, B.L., Wang, A., Haskin, L.A., 2006. Extracting olivine (Fo-Fa) compositions from Raman spectral peak positions. Geochimica et Cosmochimica Acta, 70: 6201-6222.
  • 23. Krzesińska, A.M., 2016. Thermal metamorphic evolution of the Pułtusk H chondrite breccia - compositional and textural properties not included in petrological classification. Geological Quarterly, 60 (1): 211-224.
  • 25. Lane, M.D., Glotch, T.D., Dyar, M.D., Pieters, C.M., Klima, R., Hiroi, T., Bishop, J.L., Sunshine, J., 2011. Midinfrared spectroscopy of synthetic olivines: thermal emission, specular and diffuse reflectance, and attenuated total reflectance studies of forsterite to fayalite. Journal of Geophysical Research, 116(E8): E003588.
  • 26. Madejová, J., 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31 (1): 1-10.
  • 27. Madejova, J., Komadel, P., 2001. Baseline studies of the clay minerals society source clays: infrared methods. Clays and Clay Mineralogy, 49: 410-432.
  • 28. Miyahara, M., Ohtani, E., Kimura, M., El Goresy, A., Ozawa, S., Nagase, T., Hiraga, K., 2010. Coherent and subsequent incoherent ringwoodite growth in olivine of shocked L6 chondrites. Earth and Planetary Science Letters, 295: 321-327.
  • 29. Miyamoto, M., Ohsumi, K., 1995. Micro Raman spectroscopy of olivines in L6 chondrites: evaluation of the degree of shock. Geophysical research letters, 22: 437-440.
  • 30. Morlok, A., Jones, G.C., Grady, M.M., 2004. FT-IR micro-spectroscopy of fine-grained planetary materials: further results. 35th Lunar and Planetary Science Conference, abstract 1622.
  • 31. Morlok, A., Köhler, M., Bowey, J.E., Grady, M.M., 2006. FTIR microspectroscopy of extraterrestrial dust grains: comparison of measurement techniques. Planetary and Space Science, 54: 599-611.
  • 32. Müller, C.M., Pejcic, B., Esteban, L., Delle, P.C., Raven, M., Mizaikoff, B., 2014. Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems. Scientific Reports, 4: 6764.
  • 33. Nakamuta, Y., Motomura, Y., 1999. Sodic plagioclase thermometry of type 6 ordinary chondrites: Implications for the thermal histories of parent bodies. Meteoritics & Planetary Science, 34: 763-772.
  • 34. Nasdala, L., Smith, D.C., Kaindl, R., Ziemann, M.A., 2004. Raman spectroscopy: analytical perspectives in mineralogical research. Spectroscopic Methods in Mineralogy, 6: 281-343.
  • 35. Ohta, K., Iwamoto, R., 1985a. Lower limit of the thickness of the measurable surface layer on infrared absorbing substrate by FT-IR-ATR Spectroscopy. 1985 International Conference on Fourier and Computerized Infrared Spectroscopy, International Society for Optics and Photonics: 482-483.
  • 36. Ohta, K., Iwamoto, R., 1985b. Experimental proof of the relation between thickness of the probed surface layer and absorbance in FT-IR/ATR spectroscopy. Applied Spectroscopy, 39: 418-425.
  • 37. Pilski, A.S., Przylibski, T.A., Zagożdżon, P.P., 2001. Comparative analysis of the Baszkówka and Mt. Tazerzait chondrites: genetic conclusions based on astrophysical data and the mineralogical and petrological data. Geological Quarterly, 45 (3): 331-342.
  • 38. Przylibski, T.A., Pilski, A.S., Zagozdzon, P.P., Kryza, R., 2003. Petrology of the Baszkowka L5 chondrite: a record of surface-forming processes on the parent body. Meteoritics and Planetary Science, 38: 927-937.
  • 39. Reach, W.T., Yesaltis, M., Rossman, G., 2012. Infrared Spetroscopy of Extraterrestrial Materials. American Astronomical Society, DPS meeting, abstract44, id.212.04.
  • 40. Rull, F., Muńoz-Espadas, M.J., Lunar, R., Martínez-Frías, J., 2010. Raman spectroscopic study of four Spanish shocked ordinary chondrites: Cańellas, Olmedilla de Alarcón, Reliegos and Olivenza. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368: 3153-3166.
  • 41. Sharp, T.G., DeCarli, P.S., 2006. Shock effects in meteorites. In: Meteorites and the Early Solar System II (eds., D.S. Lauretta and H.Y McSween): 653-677. University of Arizona Press.
  • 42. Słaby, E., Koch-Müller, M., Förster, H.-J., Wirth, R., Rhede, D., Schreiber, A., Schade, U., 2016. Determination of volatile concentrations in fluorapatite of Martian shergottite NWA. Meteoritics and Planetary Science, 51: 390-406.
  • 43. Stöffler, D., Keil, K., Scott, E.R.D., 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55: 3845-3867.
  • 44. Tyburczy, J.A., Frisch, B., Ahrens, T.J., 1986. Shock-induced volatile loss from a carbonaceous chondrite Implications for planetary accretion. Earth and Planetary Science Letters, 80: 201-207.
  • 45. Udvardi, B., Kovács, I.J., Kónya, P., Földvári, M., Furi, J., Budai, F., Falus, G., Fancsik, T., Szabó, C., Szalai, Z., Mihály, J., 2014. Application of attenuated total reflectance Fourier transform infrared spectroscopy in the mineralogical study of a landslide area, Hungary. Sedimentary Geology, 313: 1-14.
  • 46. Xie, Z., Sharp, T.G., Carli, P.S., 2006. Estimating shock pressures based on high-pressure minerals in shock-induced melt veins of L chondrites. Meteoritics and Planetary Science, 41: 1883-1898.
  • 47. Xu, B., Poduska, K.M., 2014. Linking crystal structure with temperature-sensitive vibrational modes in calcium carbon ate minerals. Physical Chemistry Chemical Physics, 16: 17634-17639.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1889b5d3-23af-4993-98f3-7f082591631f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.