PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Very Smooth Cell-Model Trajectories Using Five Symplectic and Two Runge-Kutta Integrators

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Time-reversible symplectic methods, which are precisely compatible with Liouville’s phase-volume-conservation theorem, are often recommended for computational simulations of Hamiltonian mechanics. Lack of energy drift is an apparent advantage of such methods. But all numerical methods are susceptible to Lyapunov instability, which severely limits the maximum time for which chaotic solutions can be “accurate”. The “advantages” of higher-order methods are lost rapidly for typical chaotic Hamiltonians. We illustrate these difficulties for a useful reproducible test case, the twodimensional one-particle cell model with specially smooth forces. This Hamiltonian problem is chaotic and occurs on a three-dimensional constant-energy shell, the minimum dimension for chaos. We benchmark the problem with quadrupleprecision trajectories using the fourth-order Candy-Rozmus, fifth-order Runge-Kutta, and eighth-order Schlier-Seiter-Teloy integrators. We compare the last, most-accurate particle trajectories to those from six double-precision algorithms, four symplectic and two Runge-Kutta.
Twórcy
autor
  • Ruby Valley Research Institute Highway Contract 60, Box 601 Ruby Valley, Nevada 89833
autor
  • Ruby Valley Research Institute Highway Contract 60, Box 601 Ruby Valley, Nevada 89833
Bibliografia
  • [1] M. Karplus, ‘Spinach on the Ceiling’: a Theoretical Chemist’s Return to Biology, Annual Review of Biophysics and Biomolecular Structure 35, 1-47 (2006).
  • [2] H.A. Posch, W.G. Hoover, and F.J. Vesely, Canonical Dynamics of the Nosé Oscillator: Stability, Order, and Chaos, Physical Review A 33, 4253-4265 (1986).
  • [3] W.G. Hoover and C.G. Hoover, Simulation and Control of Chaotic Nonequilbrium Systems (World Scientific Publishers, Singapore, 2015).
  • [4] J.A. Barker and D. Henderson, What is ‘Liquid’? Understanding the States of Matter, Reviews of Modern Physics 48, 587-671 (1976).
  • [5] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, United Kingdom, 2004).
  • [6] W.G. Hoover, O. Kum, and N.E. Owens [now Nancy Fulda], Accurate Symplectic Integrators via Random Sampling, the Journal of Chemical Physics 103, 1530-1532 (1995).
  • [7] S.K. Gray, D.W. Noid, and B.G. Sumpter, Symplectic Integrators for Large Scale Molecular Dynamics Simulations: A Comparison of Several Explicit Methods, the Journal of Chemical Physics 101, 4062-4072 (1994).
  • [8] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration Illustrated by the Störmer-Verlet Method, Acta Numerica 12, 399-450 (2003).
  • [9] D. Levesque and L. Verlet, Molecular Dynamics and Time Reversibility, Journal of Statistical Physics 72, 519-537 (1993).
  • [10] G.D. Venneri and W.G. Hoover, Simple Exact Test for Well-Known Molecular Dynamics Algorithms, Journal of Computational Physics 73, 468-475 (1987).
  • [11] H. Yoshida, Construction of Higher Order Symplectic Integrators, Physics Letters A 150, 262-268 (1990).
  • [12] Ch. Schlier and A. Seiter, High-Order Symplectic Integration: An Assessment, Computer Physics Communications 130, 176-189 (2000).
  • [13] Ch. Schlier and A. Seiter, Symplectic Integration of Classical Trajectories: A Case Study, Journal of Physical Chemistry 102, 9399-9404 (1998).
  • [14] H. Rein and D.S. Spiegel, IAS15: A Fast, Adaptive, High-Order Integrator for Gravitational Dynamics, Accurate to Machine Precision Over a Billion Orbits, arχiv 1409.4779, also available in the Monthly Notices of the Royal Astonomical Society.
  • [15] W.G. Hoover, J.C. Sprott, and P.K. Patra, Ergodic Time-Reversible Chaos for Gibbs’ Canonical Oscillator, (submitted to Physical Review E, 2015), arχiv 1503.06729.
  • [16] J. Ford, What is Chaos, that We Should be Mindful of it?, in The New Physics, edited by Paul Davies (Cambridge University Press, 1989).
  • [17] S. Liao, A Comment on the Arguments about the Reliability and Convergence of Chaotic Simulations, International Journal of Bifurcation and Chaos, 24, 91450119 (2014), arχiv 1401.0256.
  • [18] W. G. Hoover and C. G. Hoover, What is Liquid? Lyapunov Instability Reveals Symmetry-Breaking Irreversibility Hidden within Hamilton’s Many-Body Equations of Motion, Condensed Matter Physics 18, 13003-1-13 (2015), arχiv 1405.2485.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1881425a-eb80-4574-9620-4ad52fe58942
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.