PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A study of bubble-particle interactions in a column flotation process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bubble-particle interactions play an important role in flotation. This study examines the behaviour of bubble clusters in a turbulent flotation cell. Particularly, the bubble-particle interaction characteristics in flotation are investigated. The bubble size in a flotation column was measured using an Olympus i-SPEED 3 high-speed camera. Relationships between the circulating volume, bubble size and bubble terminal velocity were discussed. Probabilities of collision, attachment, detachment and acquisition between bubbles and particles in different circulating volumes were calculated based on the flotation kinetic theory. Using the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory, the relationship between the potential energy and distance in bubble-particle interaction was analysed. The results demonstrated that as the circulating volume increased, the bubble size and velocity decreased. When the circulating volume increased from 0.253 to 0.495 m3/h, the bubble diameter decreased from 511 to 462 μm, and the corresponding bubble velocity decreased from 43.1 to 37.5 mm/s. When the circulating volume remained constant as the particle size increased, probabilities of collision, attachment, detachment and acquisition increased. When the particle size remained constant as the circulating volume increased, these probabilities also increased. At a constant circulating volume as the particle size increased, the absolute value of the total potential energy between the particle and bubble increased. When the distance between the bubble and particle was 30 nm, the energy barrier appeared.
Słowa kluczowe
Rocznik
Strony
17--33
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
autor
  • School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116 Jiangsu, China
autor
  • School of Chemical and Environmental Engineering, University of Mining and Technology (Beijing), Beijing 100083, China
autor
  • School of Chemical and Environmental Engineering, University of Mining and Technology (Beijing), Beijing 100083, China
autor
  • School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
Bibliografia
  • ALBIJANIC B., NIMAL SUBASINGHEA G.K., BRADSHAWC D.J., NGUYENB A.V., 2015. Influence of liberation on bubble-particle attachment time in flotation. Miner. Eng., 74:156-162.
  • BASAOVÁ P., HUBIÇKA M., 2014. The collision efficiency of small bubbles with large particles. Miner. Eng., 66-68: 230-233.
  • DAI Z., FORNASIERO D., RALSTON J., 2000. Particle-bubble collision models-a review. Adv. Colloid Interface., 85 (2-3): 231-256.
  • EMERSON I.Z., 2007. Particle and bubble interactions in flotation systems. America: Auburn University, 2007: 22-23.
  • FIROUZI M., NGUYEN A.V., HASHEMABADIB S.H., 2011. The effect of microhydrodynamics on bubble-particle collision interaction. Miner. Eng., 24(9): 973-986.
  • FOSU S., SKINNER W., ZANIN M., 2015. Detachment of coarse composite sphalerite particles from bubbles in flotation: Influence of xanthate collector type and concentration. Miner. Eng., 71: 73-84.
  • GOEL S., JAMESON G. J., 2012. Detachment of particles from bubbles in an agitated vessel. Miner. Eng., 36-38: 324-330.
  • LI Y.F., ZHAO W.D., GUI X.H., ZHANG X.B., 2013. Flotation kinetics and separation selectivity of coal size fractions. Physicochem. Probl. Miner. Process. 49(2), 2013: 387−395.
  • MAO L.Q., 1998. Application of extended DLVO Theory: Modeling of flotation and hydrophonocity of Dodecane. America: Virginia Polytechnic Institute and State University: 24+45-48.
  • NGUYEN A.V., EVANS G.M., 2004. Attachment interaction between air bubbles and particles in froth flotation. Exp. Therm. Fluid Sci., 28 (5): 381-385.
  • NGUYEN A.V., SCHULZE H. J., 2004. Colloidal Science of Flotation. Marcel Dekker, New York: 840.
  • PYKE B., HE S.H., DUAN J.M., SKINNE W.M., FORNASIERO D., RALSTON J., 2004. From turbulence and collision to attachment and detachment:general flotation model. Proceedings of JKMRC International Student Conference, Hawaii: 77-89.
  • RAGAB S.A., FAYED H., 2012. Collision frequency of particles and bubbles suspended in homogeneous isotropic turbulence. AIAA Paper 2012-0310. AIAA 50th Aerospace Sciences Meeting, Nashville, TN, 9-12 January 2012.
  • RALSTON J., DUKHIN S.S., MISHCHUK N.A., 2002. Wetting film stability and flotation kinetics. Adv. Colloid Interface., 95 (2-3) : 145-236
  • WANG H.Y., 2011. Research on Image Processing Methods and Dynamic Characteristics of Bubble in Air-Water System. Tianjin: Tientsin University, 1-100.
  • YIANATOS J. B., 1989. Column Flotation Modelling and Technology. International Colloquium: Developments in Froth Flotation. South Africa: Cape Town: 1-30.
  • YOON R.H., LUTTRELL G.H., 1989. The effect of bubble size on fine Particle flotation. Miner. Process. Extr. M., 5(l-4): 101-122.
  • ZHANG H.J., LIU J.T., WANG Y.T., CAO Y.J., MA Z.L., LI X.B., 2013. Cyclonic-static micro-bubble flotation column. Miner. Eng., 45: 1-3.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18807439-88de-4b21-918c-fd6b16933b80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.