PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mudskipper as an Indicator Species for Lead, Cadmium and Cuprum Heavy Metal Pollution in the Mangrove, Ambon, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The heavy metal pollution in seawater and sediment can damage mangrove ecosystems and accumulate in mudskipper (Periophthalmus spp.) that lives in mangrove forests. The accumulation of heavy metal in mudskipper can affect the structure of its gill tissue, liver, and muscles. This research aims at (1) analyzing the levels of lead, cadmium and cuprum heavy metals in mudskipper, sediment, and seawater and (2) analyzing the damage to the gill, liver, and muscle tissue of mudskipper due to the exposure to heavy metals. The mudskipper samples were collected from the mangrove forests of Poka, Waai, and Rutong from May to June in 2019. The heavy metal analysis was conducted using the AAS method, while the gill, liver and muscle tissue staining was carried out with the HE (Hematoxylin Eosin) staining method with 40x magnification. The data were analyzed using descriptive analysis and correlational analysis. The results of the analysis showed that based on the mangrove locations, the order of Pb and Cu accumulation in mudskipper was Rutong> Poka> Waai; while the order of the Cd accumulation was Rutong> Waai> Poka. The changes in the gill tissue structure due to the exposure to heavy metals were in the form of teleangiectasia, secondary lamellar edema, hyperplasia, epithelial desquamation, clubbing, and primary lamellar edema. The changes in the liver tissue structure due to the exposure to heavy metals involved hemorrhage and fat degeneration. The changes in the muscle tissue structure due to the exposure to heavy metals include changes in muscle fibers, edema, and necrosis. The highest accumulation of Pb and Cd was found in gills and muscles from seawater, while low level of heavy metal Cu was found in the liver.
Słowa kluczowe
Rocznik
Strony
1--19
Opis fizyczny
Bibliogr. 124 poz., rys., tab.
Twórcy
  • Study Program of Biology Education, Faculty of Teacher Training and Education, Pattimura University, Jl. Ir. M. Putuhena, Ambon 97233, Indonesia
  • Study Program of Biology Education, Faculty of Teacher Training and Education, Pattimura University, Jl. Ir. M. Putuhena, Ambon 97233, Indonesia
  • Study Program of Biology Education, Faculty of Teacher Training and Education, Pattimura University, Jl. Ir. M. Putuhena, Ambon 97233, Indonesia
  • Study Program of Biology Education, Graduate Students, Pattimura University, Jl. Ir. M. Putuhena, Ambon 97233, Indonesia
  • Study Program of Biology Education, Graduate Students, Pattimura University, Jl. Ir. M. Putuhena, Ambon 97233, Indonesia
  • Study Program of Biology Education, Graduate Students, Pattimura University, Jl. Ir. M. Putuhena, Ambon 97233, Indonesia
  • Study Program of Biology Education, Graduate Students, Pattimura University, Jl. Ir. M. Putuhena, Ambon 97233, Indonesia
  • Study Program of Biology Education, Graduate Students, Pattimura University, Jl. Ir. M. Putuhena, Ambon 97233, Indonesia
  • Study Program of Biology Education, Faculty of Teacher Training and Education, Pattimura University, Jl. Ir. M. Putuhena, Ambon 97233, Indonesia
Bibliografia
  • 1. Abalaka, S. 2015. Heavy metals bioaccumulation and histopathological changes in Auchenoglanis occidentalis fish from Tiga dam, Nigeria. Journal of Environmental Health Science & Engineering, 13(67), 1–8. https://doi.org/10.1186/s40201-015-0222-y.
  • 2. Abdel-Satar, A.M., Shehata, M. 2000. Heavy metals accumulation and macronutrient contents in the flesh of two edible fish inhabiting the River Nile, Egypt. Journal of Egyptian Academic Society for Environmental Development, 7, 99–117.
  • 3. Ahmed, Q., Bat, L., Ali, Q. 2017. Bioaccumulation of nine heavy metals in some tissues of Anodontostoma chacunda (Hamilton, 1822) in the Arabian Sea coasts of Pakistan. Natural and Engineering Sciences, 2(3), 79–92. https://doi.org/10.28978/nesciences.349296.
  • 4. Akan, J., Mohmoud, S., Shettima, Y., Ogugbuaja, V. 2012. Bioaccumulation of some heavy metals in fish samples from river Benue in Vinikilang, Adamawa state, Nigeria. American Journal of Analytical Chemistry, 3(11), 727–736. https://doi.org/10.4236/ajac.2012.311097.
  • 5. Al-Yousuf, M., El-Shahawi, M., Al-Ghais, S. 2000. Trace metals in liver, skin and muscle of Lethrinus lentjan fish species in relation to body length and sex. Science of The Total Environment, 256(2–3), 87–94. https://doi.org/10.1016/S0048-9697(99)00363-0.
  • 6. Almiqrh, Abobakir, A., Hadiyanto. 2018. Determination of Heavy Metals (Pb, Zn, Cd, Cu) of coastal urban area of Semarang Indonesia. E3S Web of Conferences, 73, 1–8. https://doi.org/10.1051/e3sconf/20187303017.
  • 7. Amaral, A., Alvarado, N., Marigómez, I., Cunha, R., Hylland, K., Soto, M. 2002. Autometallography and metallothionein immunohistochemistry in hepatocytes of turbot (Scophthalmus maximus L.) after exposure to Cd and further depuration treatment. Biomarkers, 7(6), 491–500. https://doi.org/10.1080/1354750021000034843.
  • 8. Amundsen, P., Staldvik, F., Lukin, A., Kashulin, N., Popova, O., Reshetnikov, Y. 1997. Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Science of the Total Environment, 201(3), 211–224. https://doi.org/10.1016/s0048-9697(97)84058-2.
  • 9. Anandkumar, A., Nagarajan, R., Prabakaran, K., Rajaram, R. 2017. Trace metal dynamics and risk assessment in the commercially important marine shrimp species collected from the Miri coast, Sarawak, East Malaysia. Regional Studies in Marine Science, 16, 79–88. https://doi.org/10.1016/j.rsma.2017.08.007.
  • 10. Ansari, A., Trivedi, S., Saggu, S., Rehman, H. 2014. Mudskipper: a biological indicator for environmental monitoring and assessment of coastal waters. Journal of Entomology and Zoology Studies, 2(6), 22–33.
  • 11. Arantes, F., Savassi, L., Santos, H., Gomes, M.V., Bazzoli, N. 2016. Bioaccumulation of mercury, cadmium, zinc, chromium, and lead in muscle, liver, and spleen tissues of a large commercially valuable catfish species from Brazil. Anais Da Academia Brasileira de Ciências, 88(1), 137–147. https://doi.org/10.1590/0001-3765201620140434.
  • 12. Ardeshir, R., Movahedinia, A., Rastgar, S. 2017. Fish liver biomarkers for heavy metal pollution: a review article. American Journal of Toxicology, 2(1), 1–8.
  • 13. Arroyo, V., Flores, K., Ortiz, L., Gómez-Quiroz, L., Gutiérrez-Ruiz, M. 2012. Liver and cadmium toxicity. Journal Drug Metabolism Toxicology, 5, 1–7. https://doi.org/10.4172/2157-7609.S5-001.
  • 14. Bakhiet, H.H. 2015. Determination of heavy metals in fish tissues and water from White Nile Khartoum City-Sudan. Journal of Environment Protection and Sustainable Development, 1(3), 178–181.
  • 15. Bazzi, A. 2014. Heavy metals in seawater, sediments, and marine organisms in the gulf of Chabahar, Oman Sea. Journal of Oceanography and Marine Science, 5(3), 20–29. https://doi.org/10.5897/JOMS2014.0110.
  • 16. Bhagwant, S., Elahee, K. 2002. Pathologic gill lesions in two edible lagoon fish species, Mulloidichthys flavolineatus and Mugil cephalus, from the Bay of Poudre d’Or, Mauritius. Journal Marine Science, 1(1), 35–42.
  • 17. Bhuvaneshwari, R, Padmanaban, K., Rajendran, R. 2015. Histopathological alterations in muscle, liver and gill tissues of zebra fish Danio rerio due to environmentally relevant concentrations of organochlo rine pesticides (OCPs) and heavy metals. International Journal of Environmental Research, 9(4), 1365–1372. https://doi.org/10.22059/ ijer.2015.1029.
  • 18. Bhuyan, M., Bakar, M., Akhtar, A., Hossain, M., Ali, M., Islam, M. 2017. Heavy metal contamination in surface water and sediment of the Meghna river, Bangladesh. Environmental Nanotechnology, Monitoring & Management, 8, 273–279. https://doi.org/10.1016/j.enmm.2017.10.003.
  • 19. Bibak, M., Sattari, M., Agharokh, A., Tahmasebi, S., Namin, J. 2018. Assessing some heavy metals pollutions in sediments of the northern Persian Gulf (Bushehr province). Environmental Health Engineering and Management Journal, 5(3), 175–179. https://doi.org/10.15171/EHEM.2018.24.
  • 20. Bu-Olayan, A., Thomas, B. 2008. Trace metals toxicity and bioaccumulation in mudskipper Periophthalmus waltoni Koumans 1941 (Gobiidae: Perciformes). Turkish Journal of Fisheries and Aquatic Sciences, 8(2), 215–218.
  • 21. Camargo, M., Martinez, C.B. 2007. Histopathology of gills, kidney and liver of a neotropical fish caged in an urban stream Marina. Neotropical Ichthyology, 5(3), 327–336. https://doi.org/10.1590/S1679-62252007000300013.
  • 22. Canpolat, O., Calta, M. 2003. Heavy metals in some tissue and organs of Capoeta capoeta Umbla (Heckel, 1843) fish species in relation to body size, age, sex and seasons. Fresenius Environmental Bulletin, 12(9), 961–966.
  • 23. Chan, J. 2014. The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology. International Journal of Surgical Pathology, 22(1), 12–32. https://doi.org/10.1177/1066896913517939.
  • 24. Chaphekar, S. 1991. An overview on bioindicators. Journal of Environmental Biology, 12, 163–168.
  • 25. Chiang, J. 2014. Liver Physiology: Metabolism and Detoxification. In McManus, L. M & Mitchell, R. N. (Eds.), Pathobiology of Human Disease (pp. 1770–1782). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-386456-7.04202-7.
  • 26. Coban, B., Balkis, N., Aksu, A. 2009. Heavy metal levels in sea water and sediment of Zonguldak, Turkey. Journal Black Sea Mediterranean Environment, 15(1), 23–32.
  • 27. Dabruzzi, T., Wygoda, M., Wright, J., Eme, J., Bennett, W. 2011. Direct evidence of cutaneous resistance to evaporative water loss in amphibious mudskipper (family Gobiidae) and rockskipper (family Blenniidae) fishes from Pulau Hoga, Southeast Sulawesi, Indonesia. Journal of Experimental Marine Biology and Ecology, 406(1), 125–129. https://doi.org/10.1016/j.jembe.2011.05.032.
  • 28. Dane, H., Sisman, T. 2015. Histopathological changes in gill and liver of Capoeta capoeta living in the Karasu River, Erzurum. Environmental Toxicology, 30(8), 904–917. https://doi.org/10.1002/tox.21965.
  • 29. Dange, S., Manoj, K. 2015. Bioaccumulation of heavy metals in sediment, Polychaetes (Annelid) worms, Mud Skipper and Mud Crab at Purna river estuary, Navsari, Gujarat, India. International Journal of Current Microbiology and Applied Sciences, 4(9), 571–575.
  • 30. Drishya, M., Binu, K., Mohan, K., Ambikadevi, A., Aswin, B. 2016. Histopathological changes in the gills of fresh water fish, Catla catla exposed to electroplating effluent. International Journal of Fisheries and Aquatic Studies, 4(5), 13–16.
  • 31. Edokpayi, J., Odiyo, J., Msagati, T.A., Popoola, E. 2015. Removal efficiency of faecal indicator organisms, nutrients and heavy metals from a PeriUrban waste water treatment plant in Thohoyandou, Limpopo Province, South Africa. International Journal of Environmental Research and Public Health, 12(7), 7300–7320. https://doi.org/10.3390/ijerph120707300.
  • 32. El-Moselhy, K., Othman, A., Abd El-Azem, H., ElMetwally, M.E. 2014. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea Egypt. Egyptian Journal of Basic and Applied Sciences, 1, 97–105. http://dx.doi.org/10.1016/j.ejbas.2014.06.001.
  • 33. Elbay-Poulichet, F., Martin, J., Huang, W., Zhu, J. 1987. Dissolved Cd behaviour in some selected French and Chinese estuaries: consequences on Cd supply to the ocean. Marine Chemistry, 22(2–4), 125–136. https://doi.org/10.1016/0304-4203(87)90004-1.
  • 34. Eneji, I.S., Sha’Ato, R., Annune, P. 2011. Bioaccumulation of heavy metals in fish (Tilapia zilli and Clarias gariepinus) organs Nigeria. Pakistan Journal of Analytical & Environmental Chemistry, 12, 25–31.
  • 35. Evans, D., Piermarini, P., Choe, K. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85, 97–177. https://doi.org/10.1152/physrev.00050.2003.
  • 36. Fadaeifard, F., Azizi, S. 2014. Histopathological evaluation of environmental gill disease (EGD) in the cultured rainbow trout, Oncorhynchus mykiss. Pelagia Research Library European Journal of Experimental Biology, 4(2), 390–394.
  • 37. Fatima, M., Usamani, N. 2013. Histopathology and bioaccumulation of heavy metals (Cr, Ni and Pb) in fish (Channa striatus and Heteropneustes fossilis) tissue: a study for toxicity and ecological impacts. Pakistan Journal of Biological Sciences, 16(9), 412–420. https://doi.org/10.3923/pjbs.2013.412.420.
  • 38. Figueiredo-Fernandes, A., Ferreira-Cardoso, J.V., Garcia-Santos, S., Monteiro, S., Carrola, J., Matos, P., Fontainhas-Fernandes, A. 2007. Histopathological changes in liver and gills epithelium of Nile tilapia, Oreochromis niloticus exposed to waterborne copper. Pesquisa Veterinária Brasileira, 27(3), 103–109. https://doi.org/10.1590/S0100-736X2007000300004.
  • 39. Flores-Lopes, F., Thomaz, A. 2011. Histopathologic alterations observed in fish gills as a tool in environmental monitoring. Brazilian Journal of Biology, 71(1), 179–188. https://doi.org/10.1590/S1519-69842011000100026.
  • 40. Frazier, J. 1979. Bioaccumulation of cadmium in marine organisms. Environmental Health Perspectives, 28, 75–79. https://doi.org/10.2307/3428907.
  • 41. Gaetke, L., Chow-Johnson, H., Chow, C. 2014. Copper: toxicological relevance and mechanisms. Archives of Toxicology, 88(11), 1929–1938. https://doi.org/10.1007/s00204-014-1355-y.
  • 42. Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P. 2006. The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 10, 1–22. https://doi.org/10.1186/1745-6673-1-22.
  • 43. Gu, Y.G., Lin, Q. 2016. Trace metals in a sediment core from the largest mariculture base of the eastern Guangdong coast South China: vertical distribution, speciation, and biological risk. Marine Pollution Bulletin, 113(1–2), 520–525. https://doi.org/10.1016/j.marpolbul.2016.08.029.
  • 44. Gu, Y.G., Wang, X.N., Lin, Q., Du, F.Y., Ning, J.J., Wang, L. G., Li, Y.F. 2016. Fuzzy comprehensive assessment of heavy metals and Pb isotopic signature in surface sediments from a bay under serious anthropogenic influences: Daya Bay China. Ecotoxicology Environmental Safety, 126, 38–44.
  • 45. Gulati, K., Reshi, M.R., Rai, N., Ray, A. 2018. Hepatotoxicity: its mechanisms, experimental evaluation and protective strategies. American Journal of Pharmacology, 1(1), 1–9.
  • 46. Gümgüm, B., Tez, Z., Gülsün, Z. 1994. Heavy metal pollution in water, sediment and fish from the Tigris River in Turkey. Chemosphere, 29(1), 111–116. https://doi.org/10.1016/0045-6535(94)90094-9.
  • 47. Hadi, A., Alwan, S. 2012. Histopathological changes in gills, liver and kidney of fresh water fish, Tilapia zillii, exposed to aluminum. International Journal of Pharmacy & Life Sciences, 3(11), 2071–2081.
  • 48. Hapsari, L., Riani, E., Winarto, A. 2017. Bioaccumulation of lead (Pb) in muscle, skin, and gills of thread fin bream (Nemipterus sp.) in Banten Bay, Indonesia. AACL Bioflux, 10(1), 123–129.
  • 49. Hasan, M., Khan, M.Z., Khan, M., Aktar, S., Rahman, M., Hossain, F., Hasan, A.S.M. 2016. Heavy metals distribution and contamination in surface water of the Bay of Bengal coast. Cogent Environmental Science, 2(1), 1–12. https://doi.org/10.1080/23311843.2016.1140001.
  • 50. He, Z., Yang, X., Stoffella, P. 2005. Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010.
  • 51. Huseen, H., Mohammed, A. 2019. Heavy Metals Causing Toxicity in Fishes. IOP Conference Series: Journal of Physics: Conference Series, 1294, 1–9. https://doi.org/10.1088/1742-6596/1294/6/062028.
  • 52. Ishibashi, H., Komori, A., Migita, K., Nakamura, M., Shimoda, S. 2009. Liver architecture, cell function and disease. Seminars in Immunopathology, 31(3), 399–409. https://doi.org/10.1007/s00281-009-0155-6.
  • 53. Jan, A., Azam, M., Siddiqui, K., Ali, A., Choi, I., Haq, Q.M. 2015. Heavy metals and human health: mechanistic Insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences, 16(2), 29592–29630. https://doi.org/10.3390/ijms161226183.
  • 54. Jarup, L., Akesson, A. 2009. Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3), 201–208. https://doi.org/10.1016/j.taap.2009.04.020.
  • 55. Javed, M., Usmani, N. 2011. Accumulation of heavy metals in fishes: a human health concern. International Journal of Evironmental Sciences, 2(2), 671– 682. https://doi.org/10.1186/s40064-016-2471-3.
  • 56. Jovanovic, B., Mihaljev, E., Maletin, S., Palic, D. 2011. Assessment of heavy metal load in chub liver (Cyprinida: Leuciscuscephalus) from the Nisava river (Serbia). Biologica Nyssana, 2(1), 1–7.
  • 57. Kamaruzzam, B., Ong, M., Jalal, K. C. 2008. Level of copper, zinc and lead in fishes of Mangabang Telipot river, Terengganu, Malaysia. Journal of Biological Sciences, 8(7), 1181–1186. https://doi.org/10.3923/jbs.2008.1181.1186.
  • 58. Kaoud, H., El-Dahshan, A. 2010. Bioaccumulation and histopathological alterations of the heavy metals in Oreochromis niloticus fish. Natural Science, 8(4), 147–156.
  • 59. Kaur, S., Khera, K., Kondal, J. 2018. Heavy metal induced histopathological alterations in liver, muscle and kidney of freshwater cyprinid, Labeo rohita (Hamilton). Journal of Entomology and Zoology Studies, 6(2), 2137–2144.
  • 60. Khabbazi, M., Harsij, M., Hedayati, S.A., Gerami, M., Ghafari-Farsani, H. 2015. Histopathology of rainbow trout gills after exposure to copper. Iranian Journal of Ichthyology, 1(3), 191–196.
  • 61. Khaled, A. 2004. Heavy metal concentrations in certain tissues of five commercially important fishes from El-Mex Bay, Alexandria Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 8(1), 51–64.
  • 62. Khan, M., Ding, X., Khan, S., Brusseau, M., Khan, A., Nawab, J. 2018. The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Science of the Total Environment, 636, 810–817. https://doi.org/10.1016/j.scitotenv.2018.04.299.
  • 63. Krishnamoorthy, P., Nagarajan, K. 2013. Levels of heavy metals intwo rivers of Tamilnadu for predicting pollution loads. Journal of Chemical, Biological and Physical Sciences, 4(1), 834–840.
  • 64. Lee, C.C., Hsu, Y.C., Kao, Y.T., Chen, H.L. 2016. Health risk assessment of the intake of butyltin and phenyltin compounds from fish and seafood in Taiwanese population. Chemosphere, 164, 568–575. https://doi.org/10.1016/j.chemosphere.2016.08.141.
  • 65. Lujic, J., Marinović, Z., Miljanović, B. 2013. Histological analysis of fish gills as an indicator of water pollution in the Tamiš river. Acta Agriculturae Serbica, 18(36), 133–141.
  • 66. Maftuch, M., Sanoesi, E., Farichin, I., Saputra, B., Ramdhani, L., Hidayati, S., Fitriyah, N., Prihanto, A. 2018. Histopathology of gill, muscle, intestine, kidney, and liver on Myxobolus sp. infected koi carp (Cyprinus carpio). Journal of Parasitic Diseases, 42(1), 137–143. https://doi.org/10.1007/s12639-017-0955-x.
  • 67. Male, Y., Malle, D., Bijang, C., Fransina, E., Seumahu, C., Dolaitery, L., Landu, S., Gaspersz, N. 2017. Analysis of cadmium (Cd) and lead (Pb) metals content on sediment inner part of Ambon Bay. Journal of Chemical Research, 5(1), 22–31. https://doi.org/10.30598//ijcr.2017.5-yus. (in Indonesian).
  • 68. Male, Y., Sunarti, S., Nunumete, N. 2014. Analisys of lead (Pb) and chromium (Cr) content in the roots of seagrass (Enhalus acoroides) in waters of Waai and Tulehu village central Maluku Regency. Journal of Chemical Research, 1(2), 66–71. (in Indonesian).
  • 69. Mbeh, G., Kamga, F., Kengap, A., Atem, W., Mbeng, L. 2019. Quantification of heavy metals (Cd, Pb, Fe, Mg, Cu, and Zn) in seafood (fishes and crabs) and evaluation of health risks to consumers in Limbe Cameroon. Journal of Materials and Environmental Science, 10(10), 948–957.
  • 70. Mitra, V., Metcalf, J. 2009. Metabolic functions of the liver. Anaesthesia and Intensive Care Medicine, 10(7), 334–335. https://doi.org/10.1016/j.mpaic.2009.03.011.
  • 71. Mohammadi, M., Askary, S., Khodadadi, M. 2012. Accumulation variations of selected heavy metals in Barbus xanthopterus in Karoon and Dez rivers of Khuzestan, Iran. Iranian Journal of Fisheries Sciences, 11(2), 372–382.
  • 72. Monsefrad, F., Imanpour, N., Heidary, S. 2012. Concentration of heavy and toxic metals Cu, Zn, Cd, Pb and Hg in liver and muscles of Rutilus frisii kutum during spawning season with respect to growth parameters. Iranian Journal of Fisheries Sciences, 11(4), 825–839.
  • 73. Mortatti, J., Probst, J.L. 2010. Characteristics of heavy metals and their evaluation in suspended sediments from Piracicaba river basin (São Paulo, Brazil). Revista Brasileira de Geociências, 40(3), 375–379.
  • 74. Moslen, M., Miebaka, C. 2016. Temporal variation of heavy metal concentrations in Periophthalmus Sp. obtained from Azuabie creek in the upper bonny estuary, Nigeria. Current Studies in Comparative Education, Science and Technology, 3(2), 136–147.
  • 75. Mulligan, C., Yong, R., Gibbs, B. 2001. Remediation technologies for metal contaminated soils and groundwater: an evaluation. Engineering Geology, 60(1–4), 193–207. https://doi.org/10.1016/S0013-7952(00)00101-0.
  • 76. Mustafa, S., Al-Faragi, J., Salman, N., Al-Rudainy, A. 2017. Histopathological alterations in gills, liver and kidney of common carp, cyprinus carpio exposed to lead acetate. Advances in Animal and Veterinary Sciences, 5(9), 371–376. http://doi.org/10.17582/journal.aavs/2017/5.9.371.376.
  • 77. Naghshbandi, N., Zare, S., Heidari, R., Razzaghzadeh, S. 2007. Concentration of heavy metals in different tissues of Astacus leptodactylus from Aras Dam of Iran. Pakistan Journal of Biological Sciences, 10(21), 3956–3959. https://doi.org/10.3923/pjbs.2007.3956.3959.
  • 78. Nasr, S., Okbah, M., Kasem, S. 2006. Environmental assessment of heavy metal pollution in bottom sediments of Aden Port, Yemen. International Journal of Oceans and Oceanography, 1(1), 99–109.
  • 79. Okafor, E., Opuene, K. 2007. Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. International Journal of Environmental Science and Technology, 4(2), 233–240.
  • 80. Oliva, M., Vicente-Martorell, J., Galindo-Riaño, M., Perales, J. 2013. Histopathological alterations in Senegal sole, Solea senegalensis from a polluted Huelva estuary (SW, Spain) Perales. Fish Physiology Biochemistry, 39(3), 523–545.
  • 81. Padrilah, S., Sabullah, M., Shukor, M.Y.A., Yasid, N., Shamaan, N., Ahmad, S. 2018. Toxicity effects of fish histopathology on copper accumulation. Pertanika Journal of Tropical Agricultural Science, 41(2), 519–540.
  • 82. Patnaik, B., Howrelia, H., Mathews, T., Selvanayagam, M. 2011. Histopathology of gill, liver, muscle and brain of Cyprinus carpio communis L. exposed to sublethal concentration of lead and cadmium. African Journal of Biotechnology, 10(57), 12218– 12223. https://doi.org/10.5897/AJB10.1910.
  • 83. Pekey, H. 2006. Heavy metals pollution assessment in sediments of the Izmit bay, Turkey. Environmental Monitoring and Assessment, 123(1–3), 219–231. https://doi.org/10.1007/s10661-006-9192-y.
  • 84. Perugini, M., Visciano, P., Manera, M., Zaccaroni, A., Olivieri, V., Amorena, M. 2014. Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic sea, Italy. Environmental Monitoring and Assessment, 186(4), 2205–2213. https://doi.org/10.1007/s10661-013-3530-7.
  • 85. Polgar, G., Sacchetti, A., Galli, P. 2010. Differentiation and adaptive radiation of amphibious gobies (Gobiidae: Oxudercinae) in semi-terrestrial habitats. Journal of Fish Biology, 77(7), 1645–1664. https://doi.org/10.1111/j.1095-8649.2010.02807.x.
  • 86. Rahmanpour, S., Ashtiyani, S.M., Ghorghani, N. 2016. Biomonitoring of heavy metals using bottom fish and crab as bioindicator species, the Arvand river. Toxicology and Industrial Health, 32(7), 1208– 1214. https://doi.org/10.1177/0748233714554410.
  • 87. Rainbow, P. 2007. Trace metal bioaccumulation: models, metabolic availability and toxicity. Environment International, 33(4), 576–582. https://doi.org/10.1016/j.envint.2006.05.007.
  • 88. Rajeshkumar, S., Li, X. 2018. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicology Reports, 5, 288–295. https://doi.org/10.1016/j.toxrep.2018.01.007.
  • 89. Rankin, J., Jensen, F. 1993. Environmental effects on fish gill structure and function. In Fish Ecophysiology (pp. 231–264).
  • 90. Rath, P., Panda, U., Bhatta, D., Sahu, K. 2009. Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sedimentsa case study: Brahmani and Nandira Rivers, India. Journal of Hazardous Materials, 163(2–3), 632–644. https://doi.org/10.1016/j.jhazmat.2008.07.048.
  • 91. Renieri, E., Alegakis, A., Kiriakakis, M., Vinceti, M., Ozcagli, E., Wilks, M., Tsatsakis, A. 2014. Cd, Pb and Hg biomonitoring in fish of the mediterranean region and risk estimations on fish consumption. Toxics, 2(3), 417–442. https://doi.org/10.3390/toxics2030417.
  • 92. Reyahi-Khoram, M., Setayesh-Shiri, F., Cheraghi, M. 2016. Study of the heavy metals (Cd and Pb) content in the tissues of rainbow trouts from Hamedan coldwater fish farms. Iranian Journal of Fisheries Sciences, 15(2), 858–869.
  • 93. Rijal, M., Rosmawati, T., Natsir, N., Amin, M., Rochman, F., Badwi, D., Bahalwan, F. 2014. Bioacumulation heavy metals lead (Pb) and cadmium (Cd) seagrass (Enhalus acroides) in Waai and Galala island Ambon. International Journal of Sciences: Basic and Applied Research, 16(2), 349–356.
  • 94. Rodríguez, J., Ríos, S.E., Botero, C.M., 2015. Content of Hg, Cd, Pb and As in fish species: A review. Vitae, Revista De La Facultad De Ciencias Farmacéuticas Y Alimentarias, 22(2), 148–159. https://doi.org/10.17533/udea.vitae.v22n2a09.
  • 95. Rosales-Hoz, L., Cundy, A., Bahena-Manjarrez, J. 2003. Heavy metals in sediment cores from a tropical estuary affected by anthropogenic discharges: coatzacoalcos estuary. Estuarine, Coastal and Shelf Science, 58(1), 117–126. https://doi.org/10.1016/S0272-7714(03)00066-0.
  • 96. Rumahlatu, D., Huliselan, E., 2016. Monitoring (Hg) pollution at Ambon Bay: the use of Apogon beauforti as bioindicator. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 21(3), 117–122. DOI: https://doi.org/10.14710/ik.ijms.21.3.117-122.
  • 97. Saghali, M., Baqraf, R., Patimar, R., Hosseini, S., Baniemam, M. 2014. Determination of heavy metal (Cr, Zn, Cd and Pb) concentrations in water, sediment and benthos of the Gorgan bay (Golestan province, Iran). Iranian Journal of Fisheries Sciences, 13(2), 449–455.
  • 98. Salleh, N.H., Halim, M.A. 2018. Enhancing environmental sustainability over fisheries industry through proactive risk evaluation: A case of Tok Bali fishing port. Journal of Sustainability Science and Management Special Issue, 4, 51–63.
  • 99. Sany, S.B., Salleh, A., Sulaiman, A., Sasekumar, A., Rezayi, M., Tehrani, G. 2012. Heavy metal contamination in water and sediment of the Port Klang coastal area, Selangor, Malaysia. Environmental Earth Science, 69(6), 2013–2025.
  • 100. Sauliutė, G., Svecevičius, G. 2015. Heavy metal interactions during accumulation via direct route in fish: A review. Zoology and Ecology, 25(1), 77–86. https://doi.org/10.1007/s12665-012-2038-8.
  • 101. Shaari, H., Raven, B., Sultan, K., Mohammad, Y., Yunus, K. 2016. Status of heavy metals concentrations in oysters (Crassostrea sp.) from Setiu Wetlands Terengganu, Malaysia. Sains Malaysiana, 45(3), 417–424.
  • 102. Sia-Su, G., Ramos, G., Sia-Su, M.L. 2013. Bioaccumulation and histopathological alteration of total lead in selected fishes from Manila Bay, Philippines. Saudi Journal of Biological Sciences, 20, 353–355. https://doi.org/10.1016/j.sjbs.2013.03.003.
  • 103. Sirait, H., Barus, T., Wahyuningsih, H. 2013. Analysis of content heavy metals in various fish species in Batang Toru river Aek Pahu Tombak, and Aek Pahu Hutamosu district South Tapanuli. Jurnal Perikananan dan Kelautan, 18(2), 1–14. http://doi.org/10.31258/jpk.18.2.12-25. (in Indonesian).
  • 104. Şireli, U.T., Göncüoğlu, M., Yildirim, Y., Gücükoğlu, A., Çakmak, Ö. 2006. Assessment of heavy metals (cadmium and lead) in vacuum packaged smoked fish species (Mackerel, Salmo salar and Oncorhynhus mykiss) marketed in Ankara (Turkey). Journal of Fisheries & Aquatic Sciences, 23(3–4), 353–356.
  • 105. Souisa, G. 2017. Konsentrasi logam berat cadmium dan timbal pada air dan sedimen di Teluk Ambon [Concentration of cadmium and lead heavy metals in water and sediments in Ambon Bay]. Tunas-Tunas Riset Kesehatan, 7(1), 1–7. (in Indonesian).
  • 106. Stern, B. 2010. Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. Journal of Toxicology and Environmental Health Part A, 73(2), 114–127. https://doi.org/10.1080/15287390903337100.
  • 107. Tanjung, R.H., Hamuna, B., Yonas, M. 2019. Assessing heavy metal contamination in marine sediments around the coastal waters of Mimika Regency, Indonesia. Journal of Ecological Engineering, 20(11), 35–42. https://doi.org/10.12911/22998993/113411.
  • 108. Tchounwou, P., Yedjou, C., Patlolla, A., Sutton, D. 2012. Heavy metals toxicity and the environment. Experientia Supplementum, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6.
  • 109. Thakur, J., Mhatre, M. 2015. Bioaccumulation of heavy metals in Tilapia mossambicus fish from industrially polluted Patalganga river, India. International Journal of Advanced Research, 3(2), 486–490.
  • 110. Tjahjono, A., Suwarno, D. 2018. The Spatial distribution of heavy metal lead and cadmium pollution and coliform abundance of waters and surface sediment in Demak. Journal of Ecological Engineering, 19(4), 43–54. https://doi.org/10.12911/22998993/89715.
  • 111. Tunçsoy, M., Erdem, C. 2014. Accumulation of copper, zinc and cadmium in liver, gill and muscle tissues of Oreochromis niloticus exposed to these metals separately and in mixture. Fresenius Environmental Bulletin, 23(5), 1143–1149.
  • 112. Tupan, C., Uneputty, P. 2017. Concentration of heavy metals lead (Pb) and cadmium (Cd) in water, sediment and seagrass Thalassia hemprichii in Ambon island waters. AACL Bioflux, 10(6), 1610–1617.
  • 113. Vaidya, S. 2017. Biomonitoring of zooplankton to assess the quality of water in the nagpokhari of Kathmandu valley. International Journal of Zoology Studies, 2(1), 61–65.
  • 114. Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178–189. https://doi.org/10.1016/j.ecoenv.2005.03.013.
  • 115. Varol, M., Sen, B. 2012. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris river, Turkey. Catena, 92, 1–12. https://doi.org/10.1109/MWSYM.2011.5973443.
  • 116. Velmurugan, B., Selvanayagam, M., Cengiz, E., Unlu, E. 2009. Histopathological changes in the gill and liver tissues of freshwater fish, Cirrhinus mrigala exposed to dichlorvos. Brazilian Archives of Biology and Technology, 52(2), 1291–1296. https://doi.org/10.1590/S1516-89132009000500029.
  • 117. WHO. 2008. The global burden of diseases: 2004 update Geneva: World Health Organization. http://www.who.int/healthinfo/global_burden_disease/G BD_report_2004update_full.pdf
  • 118. Wickramasinghe, W.A.A.D., Mubiana, V., Blust, R. 2017. The effects of heavy metal concentration on bioaccumulation, productivity and pigment content of two species of marine macro algae. Sri Lanka Journal of Aquatic Sciences, 22(1), 1–8. https://doi.org/10.4038/sljas.v22i1.7511.
  • 119. Yilmaz, F. 2009. The comparison of heavy metal concentrations (Cd, Cu, Mn, Pb, and Zn) in tissues of three economically important fish (Anguilla mugilcephalus and Oreochromis niloticus) inhabiting Köycegiz lake-mugla (Turkey). Turkish Journal of Science & Technology, 4(1), 7–15.
  • 120. Yosef, T., Ghada, M. 2011. Assessment of some heavy metal contents in fresh and salted (Feseakh) mullet fish collected from El-Burullus lake, Egypt. Journal of American Science, 7(10), 137–144.
  • 121. Yousafzai, A., Douglas, P., Khan, A., Ahmad, I., Siraj, M. 2010. Comparison of heavy metals burden in two freshwater fishes Wallago attu and Labeo dyocheilus with regard to their feeding habits in natural ecosystem. Pakistan Journal of Zoology, 42(5), 537–544.
  • 122. Yu, X., Yan, Y., Wang, W.X. 2010. The distribution and speciation of trace metals in surface sediments from the Pearl River Estuary and the Daya Bay, Southern China. Marine Pollution Bulletin, 60(8), 1364–1371. https://doi.org/10.1016/j.marpolbul.2010.05.012.
  • 123. Yunus, S.M., Hamzah, Z., Wood, A., Ahmad. 2015. Assessment of Heavy metals in seawater and fish tissues at pulau Indah, Selangor, Malaysia. AIP Conference Proceedings, 1659, 1–6. https://doi.org/10.1063/1.4916877.
  • 124. Ziyaadini, M., Yousefiyanpour, Z., Ghasemzadeh, J., Zahedi, M. 2017. Biota-sediment accumulation factor and concentration of heavy metals (Hg, Cd, As, Ni, Pb and Cu) in sediments and tissues of Chiton lamyi (Mollusca: Polyplacophora: Chitonidae) in Chabahar Bay, Iran. Iranian Journal of Fisheries Sciences, 16(4), 1123–1134.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-187d0eb3-aebd-4bec-8488-e685fcf77961
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.