PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A powered prosthetic knee joint inspired from musculoskeletal system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports on a powered prosthetic knee joint powered by artificial muscles. A musculoskeletal system integrating artificial and biological muscles was simulated. The gait cycle was divided into seven modes. Based on the results of the simulation, the artificial muscles were pressurized to provide the biological knee torque. Analysis of the gait trials of an amputee showed the timing of artificial muscles was similar to EMG of biological knee muscles. This paper is an initial step forward to implement the concept of biomimetic approach in prosthetic knee technology.
Twórcy
autor
  • Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
autor
  • Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
autor
  • Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
autor
  • OBE, Centre for Biomedical Engineering, University of Surrey, Guilford, UK
autor
  • Centre for Biomedical Engineering, University of Surrey, Guilford, UK
Bibliografia
  • [1] Kaufman KR, Levine JA, Brey RH, McCrady ShK, Padgett DJ, Joyner MJ. Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Arch Phys Med Rehabil 2008;89:1380–5. http://dx.doi.org/10.1016/j.apmr.2007.11.053.
  • [2] Hafner BJ, Willingham LL, Buell NC, Allyn KJ, Smith DG. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Arch Phys Med Rehabil 2007;88:207–17. http://dx.doi.org/10.1016/j.apmr.2006.10.030.
  • [3] Martinez-Villalpando EC, Herr H. Agonist–antagonist active knee prosthesis: a preliminary study in level-ground walking. J Rehabil R D 2009;46:361–74. http://dx.doi.org/10.1682/JRRD.2008.09.0131.
  • [4] Waters R, Perry J, Antonelli D, Hislop H. Energy cost of walking amputees: the influence of level of amputation. J Bone Joint Surg 1976;58:42–6.
  • [5] Genin JJ, Bastien GJ, Franck B, Detrembleur C, Willems PA. Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees. Eur J Appl Physiol 2008;103:655–63. http://dx.doi.org/10.1007/s00421-008-0764-0.
  • [6] Segal AD, Orendurff MS, Klute Glenn K, McDowell ML, Pecoraro JA, Shofer Jane. et al. Kinematic and kinetic comparisons of transfemoral amputee gait using c-leg® and mauch sns® prosthetic knees. J Rehabil R D 2006;43:857–70. http://dx.doi.org/10.1682/JRRD.2005.09.0147.
  • [7] Dabiri Y, Najarian S, Eslami MR, Zahedi S, Moser D, shirzad E, et al. Simulation of the effect of amputation level on individual muscle forces of transfemoal amputees. Biomed Eng Appl Basis Commun 2011;23:369–76. http://dx.doi.org/10.4015/S101623721100269.
  • [8] Popovic D, Schwirtlich L. Belgrade active A/K prosthesis. In: de Vries J, editor. Electrophysiological kinesiology (International Congress Series, No. 804). Amsterdam: Excerpta Medica; 1988. pp. 337–43.
  • [9] Kapti AO, Yucenur MS. Design and control of an active artificial knee joint. Mech Mach Theory 2006;41:1477–85. http://dx.doi.org/10.1016/j.mechmachtheory.2006.01.017.
  • [10] Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. Int J Robot Res 2008;27:263–73. http://dx.doi.org/10.1177/0278364907084588.
  • [11] Herr H, Whiteley GP, Childress D. Cyborg technology – biomimetic orthotic and prosthetic technology. In: Barcohen Y, Breazeal C, editors. Biologically Inspired intelligent robots. SPIE Publications; 2003. pp. 103–39.
  • [12] Klute GK, Czerniecki JM, Hannaford B. Artificial muscles: actuators for biorobotic systems. Int J Robot Res 2002;21:295–309. http://dx.doi.org/10.1177/027836402320556331.
  • [13] Ahn KK, Naguyen HTC. Intelligent switching control of a pneumatic muscle robot arm using learning vector quantization neural network. Mechatronics 2007;17:255–62. http://dx.doi.org/10.1016/j.mechatronics.2006.12.002.
  • [14] Repperger DW, Phillips CA, Neidhard-Doll A, Reynolds DP, Berlin J. Actuator design using biomimicry methods and a pneumatic muscle system. Control Eng Pract 2006;14: 999–1009.
  • [15] Herr H, Kornbluhb R. New horizons for orthotic and prosthetic technology: artificial muscle for ambulation. In: Proceedings of the Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD); 2004.
  • [16] Delp SL. Surgery simulation: a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. Dissertation. CA, USA: Stanford University; 1990. pp. 89–106.
  • [17] Gottschalk F. Transfemoral amputation: surgical management. In: Smith DG, Michael JW, Bowker JH, editors. Atlas of amputations and limb deficiencies, surgical, prosthetic, and rehabilitation principles. (3rd ed), Rosemont, IL: American Academy of Orthopaedic Surgeons; 2004. pp. 533–40.
  • [18] Fang L, Jia X, Wang R. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment. Clin Biomech 2007;22:1125–31. http://dx.doi.org/10.1016/j.clinbiomech.2007.07.017.
  • [19] Anderson FC, Pandy MG. Static and dynamic optimization solutions for gait are practically equivalent. J Biomech 2001;34:153–61. http://dx.doi.org/10.1016/S0021-9290(00)00155-X.
  • [20] Perry J. Gait analysis. Thorofare, NJ: SLACK; 1992.
  • [21] Perry J. Amputee gait. In: Smith DG, Michael JW, Bowker JH, editors. Atlas of amputations and limb deficiencies, surgical, prosthetic, and rehabilitation principles. (3rd ed), Rosemont, IL: American Academy of Orthopaedic Surgeons; 2004. pp. 367–85.
  • [22] Tondu B, Lopez P. Modeling and control of McKibben artificial muscle robot actuators. IEEE Control Syst Mag 2000;20:15–38. http://dx.doi.org/10.1109/37.833638.
  • [23] Dabiri Y, Najarian S, Zahedi S, Moser D, Shirzad E. Muscle contribution in the swing phase of transfemoral amputee gait: an inverse dynamics approach. Res J Biol Sci 2009;4:1076–84. http://dx.doi.org/10.3923/rjbsci.2009.1076.1084.
  • [24] Fite KB, Goldfarb M. Design and energetic characterization of a proportional-injector monopropellant powered actuator. IEEE-ASME T Mech 2006;11:196–204. http://dx.doi.org/10.1109/TMECH.2006.871097.
  • [25] Varol HA, Goldfarb M. Decomposition-based control for a powered knee and ankle transfemoral prosthesis. In: Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics; 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1874e021-2af7-4a4f-9c79-7f36d1986cea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.