PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controlling continuous bioreactor via nonlinear feedback: modelling and simulations approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to present a class of nonlinear controller with an exponential-type feedback in order to regulate the sulfate mass concentration via the input flow in a continuous stirred tank bioreactor of an anaerobic sulfate-reducing process. The corresponding kinetic terms in the bioreactor’s modeling are modeled by unstructured modeling approach, which was experimentally corroborated. A sketch of proof of the closed-loop stability of the considered system is done under the framework of Lyapunov theory. Numerical experiments are conducted to show the performance of the proposed methodology in comparison with a well-tuned sigmoid controller.
Rocznik
Strony
235--241
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
  • Department of Biotechnology and Bioengineering, Centro de Investigación y Estudios, Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, 07360, Ciudad de México D.F., Méxio
  • Chemical and Biochemical Engineering Division. Tecnológico de Estudios Superiores de Ecatepec. Av. Tecnologico S/N, Colonia Valle de Anahuac, 55210, Ecatepec de Morelos, Edo. Mexico, Mexico
Bibliografia
  • [1] P.A. López Pérez, R. Aguilar López, and M.I. Neria González, “Cadmium removal at high concentration in aqueous medium: mediated by Desulfovibrioalaskensis”, Int. J. Env. Sci. and Tech., DOI: 10.1007/s13762-014-0601-4 (2015).
  • [2] L.A. Melo-Varela, S. Casanova-Trujillo, and G. Olivar-Tost, “Dynamics of a bioreactor with a bacteria piecewise-linear growth model in a methane-producing process”, Math. Prob. in Engin. ID 685452, DOI.org/10.1155/2013/685452 (2013).
  • [3] J. Alvarez-Ramirez and J. Alvarez, “PI regulation for a class of bioreactors: stability and performance”, Int. J. Rob. and Nonlinear Ctl. 24 (5), 918-929 (2014).
  • [4] R. Aguilar, J. González, M.A. Barrón, R. Mart´ınez, and R. Maya-Yescas, “Robust PI2 controller for continuous bioreactors”, Proc. Biochem. 36 (10), 1007-1014 (2001).
  • [5] I.Y. Smets, J.E. Claes, E.J. November, G.P. Bastin, and J.F. Van Impe, “Optimal adaptive control of (bio)chemical reactors: past, present and future”, J. Proc. Ctl. 14, 795-805 (2004).
  • [6] F. Angulo, R. Munoz, and G. Olivar, “Control of a bioreactor using feedback linearization”, Proc. Medit. Conf. on Ctl. Auto. 1, 1-6 (2007).
  • [7] M.I. Neria.González, R. Mart´ınez-Guerra, and R. Aguilar- López, “Feedback regulation of an industrial aerobic wastewater plan”, Chem. Eng. J. 139, 475-481 (2008).
  • [8] S. Ramaswamy, T. Cutright, and H. Qammar, “Control of a continuous bioreactor using model predictive control”, Proc. Biochem. 40 (8), 2763-2770 (2005).
  • [9] M. Bakosova, D. Puna, and A. Meszarosa, “Control of a continuous time stirred tank reactor via robust static output feedback”, Proc. Medit. Conf. on Ctl and Aut. 1, 1-6 (2006).
  • [10] S.V. Sunil Kumar, V. Ramesh Kumar, and G. Prabhaker Reddy, “Nonlinear control of bioreactors with input multiplicities- an experimental work”, Bioproc. and Biosyst. Eng. 28 (9), 45-53 (2005).
  • [11] J. Boskovic and K.S. Narendra, “Comparison of linear, nonlinear and neural-network based adaptive controllers for a class of fed-batch fermentation processes”, Automatica 31 (6), 817-840 (1995).
  • [12] J. Ming-Feng, C. Yuh-Jongn, and C. Yi-Shyong, “Robust adaptive controller for continuous bioreactors”, Biochem. Eng. J. 81, 136-145 (2013).
  • [13] D. Coutinho and A. VandeWouwer, “A robust non-linear feedback control strategy for a class of bioprocesses”, IET Ctl. Theory and Appl. 7 (6), 829-841 (2013).
  • [14] P.A. López-Pérez, M.I. Neria-González, and R. Aguilar-López, “Nonlinear controller design with application to a continuous bioreactor”, Theo. Found. of Chem. Eng. 47 (5), 585-592 (2013).
  • [15] P.A. López-Pérez, M.I. Neria-González, and R. Aguilar-López, “Cadmium concentration stabilization in a continuous sulfate reducing bioreactor via sulfide concentration control”, Chem. Pap. 67 (3), 326-335 (2013).
  • [16] M. Reis, J. Lemos, and M. Carrondo, “Effect of hydrogensulfide on growth of sulfate reducing bacteria”, Biotech. and Bioeng. 40 (5), 593-600 (1992).
  • [17] M. Reis, P.C. Lemos, J.S. Almeida, and M. Carrondo, “Influence of produced acetic-acid on growth of sulfate reducing bacteria”, Biotech. Lett. 12 (2), 145-148 (1990).
  • [18] H. Keehyun and O. Levenspiel, “Extended Monod kinetic for substrate, product, and cell inhibition”, Biotech. and Bioeng. 32, 430-437 (1987).
  • [19] V. Peña Caballero, “Analysis of the operation of hybrid processes for the removal of Cr(VI)”, Ph D Thesis, CINVESTAV-IPN, México, 2013, (in Spanish).
  • [20] P. Luoudop, H. Fotsin, E.B. Megam Nguonkadi, S. Bowong, and H.A. Cerdeira, “Effective synchronization of a class of chua’s chaotic systems using an exponential feedback coupling”, Abs. and App. Anal. 20 ID 483269, 7 (2013).
  • [21] H.K. Khalil, Nonlinear Systems, Prentice Hall, New York, 1996
  • [22] A. Kolmer, P. Wikström, and K. Hallberg, “A fast and simple turbidimetric method for the determination of sulfate in sulfatereducing bacteria cultures”, J. Microbio. Meth. 41, 179-184 (2003).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1873f485-fde5-4dab-ae50-6f611dbe674b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.