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Abstract. The aim of this work is to present a class of nonlinear controller with an exponential-type feedback in order to regulate the sulfate
mass concentration via the input flow in a continuous stirred tank bioreactor of an anaerobic sulfate-reducing process. The corresponding
kinetic terms in the bioreactor’s modeling are modeled by unstructured modeling approach, which was experimentally corroborated. A sketch
of proof of the closed-loop stability of the considered system is done under the framework of Lyapunov theory. Numerical experiments are
conducted to show the performance of the proposed methodology in comparison with a well-tuned sigmoid controller.
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1. Introduction

Sulfate reduction is widely used for treating sulfate-containing
wastewaters from industries, such as paper, textiles, pulp, and
mining. In these processes, sulfate is converted to sulfide as
the end product. Hence, it is ideally suited for treating metal-
containing wastewater from which heavy metals are simul-
taneously removed through the formation of metal sulfides.
The current approach to biological treatment of complex tox-
ic wastewater relies primarily on the use of microbial cul-
tures. Many industrial waste treatment systems favor anaerobic
processes because they usually require fewer resources [1].

On the other hand, the high demanding of the treatment
regulations of industrial and municipal wastewaters have lead
towards the addition of alternative unit processes, towards the
renewal of the existing ones and towards the increased treat-
ment chemical dosing and energy consumption in the waste-
water treatment plants. This has made the cost-efficient oper-
ation of the plants more complicated. Besides, considerable
development in instrumentation, automation and communica-
tion technologies has taken place during the recent decades,
which has made possible the use of more advanced process
control solutions in this kind of processes.

Process control aims are to increase the operation effi-
ciency of the plants, therefore advanced process control al-
gorithms can be used for the more accurate control of the
process variables in comparison with the traditional opera-
tional methods. For example, one can estimate the influence
of a control action on the process performance in the near
future using mathematical models. An accurate mathematic
process model developed using the process understanding and
the operation data of a plant is needed for model predictive

control. Process control is applied at several levels, such as
the unit process level and plant-wide level.

The bioreactors processing is in most cases full of oper-
ational problems concerning essentially in the form of input
and output multiplicities [2]. When input multiplicities occur,
there is always the possibility of a transition from one steady
state to another without detecting it; moreover, input multi-
plicity implies the existence of operational zones where the
uncontrolled dynamics of the process could be unstable.

Despite the highly nonlinear dynamic of the bioreactor
behavior, it is generally controlled via classical linear control
approaches as classical proportional-integral-derivative (PID)
schemes; the capacity of PID controllers to regulate most
practical processes has led to their wide acceptance in indus-
trial applications [3, 4], where these controllers perform well
for processes with smooth dynamics and low performance re-
quirements in narrow operating regions.

A detailed review of control strategies and their corre-
sponding application can be found in the works of [5] and [6].
Some methods related to system model linearization as well as
feedback linearization have also been considered [7]. Aguilar
et al. [8] used an observer-based feedback linearized controller
to regulate the bioreactor operation leading the substrate con-
centration to a desired set-point. Ramaswamy et al. [9] used
model predictive control (MPC) to steer a continuous stirred
tank reactor output towards a required set-point. Moreover,
MPC have been employed for system with linear and smooth
dynamic; therefore, MPC does not always address the nonlin-
ear nature of systems, as the technique needs empirical and
linearized system representations, making possible a poor sys-
tem performance for even well-designed MPCs [9]. Bakosova
et al. [10], propose a linear robust static output feedback con-
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troller to regulate the nonlinear system with parametric uncer-
tainties. Furthermore, in [11, 12], the authors have demonstrat-
ed theoretically and experimentally the superior performance
nonlinear controller over conventional PI controller for biore-
actor with input multiplicities. From the above, some nonlin-
ear controllers have been proposed for bioreactor’s control,
considering adaptive, neural networks and robust frameworks
[12–14], in particular for anaerobic sulfate reducing bioreac-
tors [15, 16].

From the above, in this work it is proposed a class of
nonlinear controller which allows regulating the dynamic be-
havior of a continuous stirred tank bioreactor, where the sul-
fate mass concentration is controlled via sulfate concentration
measurements.

2. Bioreactor modeling

For sulfate-reducing bacteria (SRB) has been reported the in-
hibitory effect of sulfide in form of H2S on cell growth in
both batch and continuous cultures. Depending on the species
of the SRB have been reported inhibitory concentrations of
H2S in an interval of 250 to 550 mgL−1 [17].

According to the nature of sulfate-reducing process, the
kinetic of growth of SRB is limited by the main products (i.e.
hydrogen sulfide and acetate) related to oxidation of substrates
as sulfate and lactate [18]. Considering this, for kinetic model-
ing, the structure of the corresponding model should consider
the concentrations of these products. An important aspect to
consider in the application of these processes is related to se-
lection or development of the mathematical model kinetic of
growth of SRB.

In this work, the purpose is to approximate the kinetic of
growth anaerobic sulfate-reducing bacterium classified as D.

alaskensis 6SR, where is proposed a double substrate with
product inhibition unstructured kinetic model in accordance
with the following structure which belongs to kinetic model
proposed by Keehyun and Levenspiel [19]:

µ(x2, x3, x4) = µmax

(

x2

ks1 + x2

)(

x4

ks2 + x4

)

(

1 −
x3

P ∗

)n

,

(1)
where the kinetic parameter’s set is given as follows: µmax =
0.1682 h−1; ks1 = 2296 mg L−1; ks2 = 1387 mg L−1;
P∗ = 613.5575 mg L−1; n = 0.615; and x2, x3 and x4 are
the sulfate, sulfide and lactate mass concentrations, respec-
tively.

The kinetic model given by Eq. (1) was compared with
experimental data sets and a correlation coefficient of R2 =
0.971 was obtained, as reported in [20]. Now, from the above
kinetic model for the specific cell growth rate, the following
mass balances equations are generated, considering continu-
ous operating mode:
Biomass (x1) mass balance:

dx1

dt
= −Dx1 + µ(x2, x3, x4)x1. (2)

Sulfate (x2) mass balance:

dx2

dt
= D(x2,in − x2) − µ(x2, x3, x4)x1Y1. (3)

Sulfide (x3) mass balance:

dx3

dt
= −Dx3 + µ(x2, x3, x4)x1Y2. (4)

Lactate (x4) mass balance:

dx4

dt
= D(x4,in − x4) − µ(x2, x3, x4)x1Y3. (5)

Acetate (x5) mass balance:

dx5

dt
= −Dx5 + µ(x2, x3, x4)x1Y4, (6)

where Y1 = 8.1355; Y2 = 1.5885; Y3 = 13.631; Y4 =
8.5139, here Y1 is the sulfate-biomass yield coefficient, Y2 is
the sulfide-biomass yield coefficient, Y3 is the lactate-biomass
yield coefficient and Y4 is the acetate-biomass yield coeffi-
cient.

Here the x2,in and x4,in are the inlet concentration of
sulfate and lactate and the D = F/V is the named dilution
rate, where F is the input/output volumetric flow rate and V
is the corresponding volume of the reacting mixture, which
is assumed as a constant.

3. Proposed controller

In general the system (2)–(5) can be generally represented by
the following nonlinear state space representation:

ẋ = f(x(t)) + g(x(t))u(x(t)) (7)

and measured output:

y = h(x(t)) = Cx(t), (8)

here x(t) ∈ R
n is the state space vector, f(x(t)) is a

nonlinear smooth vector field, f(x(t)) := {f : R
n → R

n},
g(x(t)) := {g : R

n → R
nxm} is the coefficient matrix of the

control input and u(x(t)) ∈ Rm is the control input vector
and y ∈ R

q . Dimensions n and m correspond to number
of states in the model and number of manipulate variables,
qis the number of output measures. Vector function f(x(t))
contains all nonlinear terms in the model and g(x(t)) matrix
contains linear relationships with vector of manipulate vari-
ables u(x(t)) It is assumed that the state variables belong to
a given compact set ℵx ∈ R

n and all the closed-loop trajec-
tories with initial conditions x(0) in ℵx remain bounded.

Assumptions:
A1. The smooth and nonlinear vector field f(x(t))is

bounded, i. e. ‖f(x(t))‖ ≤ F < ∞.
A2. The coefficient matrix of the control input g(x(t))is

bounded, i. e. ‖g(x(t))‖ ≤ Σ < ∞.
Defining the regulation error as ε(x(t)) = y(t) − ysp =

C(x(t)− xsp) where xsp is a constant set point, the dynamic
equation for the regulation error is given by:

ε̇ = f(x(t)) + g(x(t))u(x(t)). (9)

Therefore, inspired in the work of [21], the following con-
troller is considered:

u(x(t)) = −k (exp (ε(x(t))) − 1) . (10)

The proposed structure given by Eq. (10) provides closed-
loop stability to the system (7). Note that for negative values
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of the regulation error, the control law (12) tends to the value
of the control gain k and for positive values of the regulation
error the controller tends to negative bounded values, con-
sidering that the regulation error is also bounded by physical
constraints; when regulation errors are close to zero, means
that the controlled state variable is close to the set point val-
ue, the controller tends to zero and it is off. From the above,
the considered control structure tries to compensate the non-
linearities of the system (7), imposing a stable closed-loop
behaviour.

3.1. Closed-loop stability sketch of proof. Consider the
closed-loop state equation given by Eq. (9) under the con-
trol law (10)

ε̇ = f(x(t)) − g (x(t)) (k (exp (ε(x(t))) − 1)). (11)

Now, in order to analyze with detail the closed-loop stability
of the system (11), it is needed to solve Eq. (11), as observed
it is a highly nonlinear ordinary differential equation where
the analytical solution is difficult to obtain. However, consid-
ering the monotonic behavior of the exponential function in
the proposed control input, it is considered the Lyapunov sec-
ond method [22] and the well-known principle of LaSalle’s
as well as a well arranged mathematical model described in
Sec. 2, in order to show the general stability characteristic of
the closed-loop dynamic of the system (11). Proposing the
following Lyapunov candidate function L as a quadratic form
of the regulation error:

L =
1

2
ε
2

. (12)

The derivative along the trajectories of (12) is:

L̇ = εε̇ = ε(x(t))(f(x(t)) + g(x(t))u(x(t))). (13)

Maximizing Eq. (13):

L̇ ≤ ‖f(x(t)) + g(x(t))u(x(t))‖ ‖ε(x(t))‖ . (14)

Then:
L̇ ≤ [‖f(x(t))‖ − ‖g(x(t))‖

· ‖k (exp(ε(x(t))) − 1)‖] ‖ε(x(t))‖ .
(15)

Applying assumptions A1 and A2:

L̇ ≤ [F − kΣ ‖(exp(ε(x(t))) − 1)‖] ‖ε(x(t))‖ . (16)

Considering that:

0 ≤ ‖(exp (ε(x(t))) − 1)‖ . (17)

For ε(x(t)) 6= 0.
It is required that:

F < kΣ.

Then:
F − kΣ < 0. (18)

If k > F (Σ)
−1; then:

L̇ < 0. (19)

Selecting adequately the control’s gain k, by consider the
equation criteria (18) and under the Lyapunov theory frame-
work this provides semi-global and closed-loop stability for
the system (11).

Considering an alternative representation of the Lyapunov
function time-derivative as:

L̇ = ∇Lε̇, (20)

where ∇L is defined as the gradient of the Lyapunov function
L along the trajectory of the regulation error vector ε(x(t)).
As it is known, the time-derivative of the Lyapunov func-
tion must be negative-definite is order to assure asymptotic
stability of the system (11), therefore the corresponding in-
ner product of the gradient and the tangent vector ε̇ must be
defined constantly negative, such that the angle between the
corresponding vector must be larger than 90◦, so that the Lya-
punov function surface L is monotonically decreasing to zero.
In consequence the system trajectory of the regulation error
ε(x(t)), and the projection on the corresponding domain, con-
verges to the origin as the time evolves.
Now, the trivial case, when ε(x(t)) = 0.
Then:

L̇ = 0. (21)

Finally, considering the both two mentioned possibilities:

L̇ ≤ 0. (22)

Therefore, from the Lyapunov second method, the system (11)
is closed-loop stable.

Now, considering the application to the continuous biore-
actor, it is represented by the following Single Input – Single
Output (SISO) non-linear system from the sulfate (x2) mass
balance (Eq. (3)), which is assumed as the controlled state
equation:

ẋ2 = µ(x2, x3, x4)x1Y1 + (x2,in − x2)D, (23)

where the system measured output is also the sulfate concen-
tration:

y = x2. (24)

Note that C = diag [0 1 0 0 0] and the control input (u(t)) is
selected as the dilution rate:

u(x(t)) = D. (25)

The assumptions A1 and A2 for our particular case are:

‖µ(x2, x3, x4)x1Y1‖ ≤ µmax = F < ∞, (26)

‖(x2,in − x2)‖ ≤ x2,in = Σ < ∞. (27)

Note that the bounds of the both above terms are giving by
physical constraints related with chemical kinetic and mass
balance principles.

The regulation error dynamics in term of the original state
space variables is giving as follows:

ε̇ = µ(x2, x3, x4)x1Y1 − (x2,in − x2)(k(exp(ε(x(t)) − 1)).
(28)
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Now the domain of the state space bioreactor model is the set
Ω ⊂ ℜ5, therefore;

Ω =











(x1, x2, x3, x4, x5) ∈ ℜ5
+/0 ≤ x1 ≤ x1,max;

0 ≤ x2 ≤ x2,in;; 0 ≤ x3 ≤ x3,max;

0 ≤ x4 ≤ x4,in; 0 ≤ x5 ≤ x5,max











.

Remember that the sub-index in is refereed as input bioreac-
tor concentrations and the sub-index max is refereed as the
maximum reached concentrations allowed by kinetic and ther-
modynamics constraints.

4. Numerical results

Numerical simulations were carried out in order to show the
open-loop and closed-loop behavior of the anaerobic bioreac-
tor. A PC computer with Intel Core i7 processor and ode23s
library from MatLab to solve the ordinary differential equa-
tions system were employed; the initial conditions for the mass
concentrations were x10 = 125 mg/L, x20 = 5250 mg/L,
x30 = 50 mg/L, x40 = 2750 mg/L and x50 = 25 mg/L.
Figures 1 and 2 are related with the open-loop behavior of
the mass concentrations of all the state variables, it is ob-
served a relatively high value of the sulfate concentration,
around 2800 mg/L at steady state condition, this is an indica-
tor of a poor performance of the bioreactor for sulfate removal
purposes when the dilution rate is D = 0.025 hours−1. Fig-
ure 3 shows the corresponding phase portrait for the sulfate
reducing process, where stable trajectories are showed; Fig. 4
presents the phase portrait of the carbon source consump-
tion with a stable trajectory too. The closed-loop behavior of
the continuous bioreactor in Figs. 5 and 6 where the proposed
controller is turned-on at time t = 150 hours, considering that
the sulfate concentration is the measured and controlled state
variable, the consuming sulfate concentration in the medium
can be measured by turbid metric method based on the pre-

cipitation of barium, which is a fast and simple method [22];
the control’s gain is selected as k = 10 hours−1, in order to
show the controller’s capabilities two set points for the sul-
fate concentrations are selected to increase and diminish the
sulfate concentration in comparison with the corresponding
open-loop behavior. Firstly, the sulfate concentration is forced
to reach a set point of 3000 mg/L with a setting time of the or-
der of 30 hours without overshoots in this dynamic behavior,
furthermore, to show, via numerical simulations, the capa-
bility of the proposed methodology at time t = 250 hours,
the required set point is changed to 2725 mg/L, again the
performance of the bioreactor is satisfactory and the new set
point is reached without difficulties; note that all the uncon-
trolled mass concentrations (zero dynamic) remain with stable
dynamic closed-loop response. On other hand, Fig. 7 shows
the performance of the closed-loop trajectories of the sulfate-
reducing process under different initial conditions, it is ob-
served that both two trajectories reach the required set point.
Figure 8 shows the performance of the control effort given by
the dynamic behavior of the dilution rate, the control input
has an open-loop nominal value of 0.025 hours−1, when the
controller is turned-on the dilution rate is moved to around
0.05 hours−1 to reach a steady state of 0.033 hours−1 in a
smooth way for the first considered set point, when the set
point is changed to 2750 mg/L the dilution rate is diminished
close to zero and then, a second steady state is reached with
D = 0.023 hours−1. It is important to note that the required
effort of the proposed controller belongs to physically realiz-
able domain. Finally, a comparison with a class of sigmoid
controller [16] under the same control’s gain was done via
a performance index named Integral Time-weighted Square
Error (ITSE) which more penalize large control errors at long
times, Fig. 9 shows the better performance of the proposed
methodology.

Fig. 1. Open-loop dynamics of Biomass and Sulfide Concentrations
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Fig. 2. Open-loop dynamics of Sulfate, Lactate and Acetate Concentrations

Fig. 3. Open-loop phase portrait of the sulfate-reducing process

Fig. 4. Open-loop phase portrait of the carbon source consumption process

Fig. 5. Closed-loop dynamics

Bull. Pol. Ac.: Tech. 64(1) 2016 239

Unauthenticated
Download Date | 3/30/16 2:29 PM



R. Aguilar-López and I. Neria-González

Fig. 6. Closed-loop dynamics

Fig. 7. Closed-loop phase portrait of the sulfate-reducing process under different initial conditions

Fig. 8. Control effort

Fig. 9. Dynamic behavior of the performance index
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5. Conclusions

In this work a kinetic model experimentally corroborated for a
sulfate-reducing process is presented, this model is employed
as a benchmark on a continuous stirred tank bioreactor, where
an exponential-type feedback is considered to regulated the
sulfate concentration in the bioreactor via sulfate concentra-
tion measurements manipulating the dilution rate (input flow).
The proposed controller is able to lead to the sulfate concen-
tration to the required set points, with a satisfactory effort
as showed by the numerical simulations, in agreement with
the closed-loop stability analysis. For comparison purposes
a sigmoid controller is implemented and the proposed one
shows a better performance.
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