PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Iceberg Melting and Climate Change in NW Atlantic Waters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate change is predicted to cause increases in sea surface temperature (SST), as well as decreases in sea-ice cover, wind and current velocities. These changes will have a marked effect on iceberg melting in the shipping lanes off Newfoundland and Labrador, Canada. Icebergs that today can cross from northern Labrador to Newfoundland without melting will in the future have to be much larger to survive the transit. For example, icebergs at N Labrador in December of 2016 that are smaller than 156 m will melt before reaching 48N, but in year 2100 the length increases to 228 m. In addition, if future iceberg size distributions off Labrador are the same as today, icebergs will experience roughly 50% reductions in numbers in the NW Atlantic shipping lanes by year 2100. The increased melting rates are due to, in order of importance, increased sea-surface temperatures (responsible for 66% of the increase in the minimum transit size), decreasing current velocities (31%), and decreasing sea-ice cover (3%). Decreasing sea-ice tends to increase wave heights as well as accelerate the effects of wave erosion; however, for the areas studied the wave height is predicted to decrease moderately in year 2100, by a maximum of about 10% in December.
Twórcy
  • United States Merchant Marine Academy, NY, Kings Point, United States
autor
  • United States Merchant Marine Academy, NY, Kings Point, United States
Bibliografia
  • 1. Alexander, MA, et al. 2018 Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elem Sci Anth, 6: 9. DOI: https://doi.org/10.1525/elementa.191 - doi:10.1525/elementa.191
  • 2. Bigg, G. R., M. R. Wadley, D. P. Stevens, and J. A. Johnson, 1996: Prediction of iceberg trajectories for the North Atlantic and Arctic Oceans. Geophys. Res. Lett., 23, 3587–3590, doi:10.1029/96GL03369. - doi:10.1029/96GL03369
  • 3. Bigg, G. R., M. R. Wadley, D. P. Stevens, and J. A. Johnson, 1997: Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol., 26, 113– 135,doi:10.1016/S0165-232X(97)00012-8. - doi:10.1016/S0165-232X(97)00012-8
  • 4. Bigg (2014) Bigg GR, Wei HL, Wilton DJ, Zhao Y, Billings SA, Hanna E, Kadirkamanathan V. 2014 A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc.R. Soc.A 470 : 20130662. http://dx.doi.org/10.1098/rspa.2013.0662 - doi:10.1098/rspa.2013.0662
  • 5. Canadian Coast Guard 2012. Ice Navigation in Canadian Waters/ Ice Climatology and Environmental Conditions, Ch. 3, Icebreaking Program, Maritime Services Canadian Coast Guard Fisheries and Oceans Canada Ottawa, Ontario K1A 0E6 Cat. No. Fs154-31/2012E-PDF ISBN 978-1-100-20610-3
  • 6. EL-Tahan, M., Venkatesh, S., EL-Tahan, H. 1987. Validation and Quantitative Assessment of the Deterioration Mechanisms of Arctic Icebergs, 102 /Vol. 109, February 1987 Transactions of the ASME
  • 7. HadISST (2003) Rayner,N., Parker, D., Horton, E., Folland, C., Alexander, L., Rowell, D., Kent, E., Kaplan, A., Global Analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J, Geophys. Res.Vol. 108, No. D14, 4407, 10.1029/2002JD002670. Data downloaded February 2018. - doi:10.1029/2002JD002670
  • 8. Han, G., Colbourne, E., Pepin, P., and Xie, Y., 2015. Statistical projections of ocean indices off Newfoundland and Labrador. Atmosphere-Ocean, 556-570, doi: 10.1080/07055900.2015.1047732 - doi:10.1080/07055900.2015.1047732
  • 9. IIP 2015. Report of the International Ice Patrol in the North Atlantic, 2015, www.navcen.uscg.gov/IIP.
  • 10. Knutti, R., Masson, D., Gettelman, A. 2013. Climate model genealogy: Generation CMIP5 and how we got there, GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1194–1199, doi:10.1002/grl.50256, 2013 - doi:10.1002/grl.50256
  • 11. Marko, J.R., Birch, J. and Wilson, M. 1982. A study of long-term iceberg satellite-tracked iceberg drifts in Baffin Bay and Davis Strait, Arctic, vol. 35, pp. 234-240, March 1982. - doi:10.14430/arctic2322
  • 12. Martin, T., and A. Adcroft, 2010: Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Modell., 34, 111–124, doi:10.1016/j.ocemod.2010.05.001 - doi:10.1016/j.ocemod.2010.05.001
  • 13. Nalcor (2015) Metocean Climate Study Offshore Newfoundland & Labrador, Prepared for: Nalcor Energy Oil and Gas, Prepared by: C-CORE, Reviewed & Edited by: Bassem Eid, Ph.D. ,May 2015) STUDY MAIN REPORT Volume 1: Full Data Summary Report.
  • 14. NASA GISS (2018) Panoply software, by R. Schmunk, NASA – GISS, downloaded February 2018 from https://www.giss.nasa.gov/tools/panoply/credits.html
  • 15. NCAR, 2017. US Department of Energy; National Center for Atmospheric Research (2017): WCRP CMIP5: The NSF-DOE-NCAR team CESM1-CAM5 model output for the rcp85 experiment. Centre for Environmental Data Analysis, downloaded February 2018 http://catalogue.ceda.ac.uk/uuid/d4c0e8303b4a4d6289dca3f3041c0c7e
  • 16. Newell, J.P., 1991, Exceptionally Large Icebergs and Ice Islands in Eastern Canadian Waters: A Review of Sightings from 1900 to Present, VOL. 46, NO. 3 (SEPTEMBER 1993) P. 205-211 ARCTIC
  • 17. Peterson, I.K., Prinsenberg, S.J. and Langille, P., 2000. Sea Ice Fluctuations in the Western Labrador Sea (1963-1998). Can. Tech. Rep. Hydrogr. Ocean Sci. 208: v + 51 p.
  • 18. Robe, R.Q., Maier, D.C. 1979. Long-term tracking of Arctic icebergs, Final Report USCG-C-36-79
  • 19. Robe, R.Q., Maier, D.C., and Russel, 1980. Long term drift of icebergs in Baffin Bay and Labrador Seas, Cold Regions Science and Technology, 1: 183-193 - doi:10.1016/0165-232X(80)90047-6
  • 20. Savage, S.B., 1999: Analyses for Iceberg Drift and Deterioration Code Development. Technical Report Canadian Ice Service. pp. 50.
  • 21. Robe, R.Q., 1983, Elements of an iceberg deterioration model, USCG Research and Development Center Report CG-D-18-3.
  • 22. Wagner, T., Dell, R., Eisenman, I., 2017, An analytical model of iceberg drift, Journal of Physical Oceanography, Vol 47, 2017 DOI: 10.1175/JPO-D-16-0262.1 - doi:10.1175/JPO-D-16-0262.1
  • 23. White, F.M., 2016, Fluid Mechanics, McGraw Hill
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1872fb14-16f6-4d54-bece-a6eff35dac6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.