PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Limiting the Hurtful Oxidative Stress and Seasonal Physiological Adaptations in Seashore Paspalum through the Use of Banana Waste Biochar and Compost Mixtures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study’s purpose was to reduce the oxidative stress, seasonal physiological changes of paspalum vaginatum and ameliorate soil properties through the addition of banana waste biochar and compost. Different rates of organic amendments were incorporated into sandy loam soil to investigate their impact on paspalum physiological, biochemical, and development in pot and field settings over three seasons (winter, spring and summer). Under the conditions of these two places, paspalum leaves gas exchange characteristics, stomatal traits, anatomy traits, relative water content, proline, antioxidant enzyme activities, and paspalum pigments were determined. For the irrigation system, two rates were chosen: 20% and 60% of the water holding capacity of the control plot WHC. In this study, two advanced statistical analyses were conducted. A factor analysis of mixed data (FAMD) was performed for the analysis of the effect of our charcoal on soil data. Meanwhile, the impact of banana waste biochar on biological activities was investigated using multiple factorial analysis (MFA). The use of biochar and compost blends boosted the cation exchange capacity (CEC) of treated soils, according to our findings. Furthermore, the use of banana waste biochar improved biological basis in the summer season compared with previous seasons. Different antioxidant capacities in seashore paspalum were boosted in the improved soils compared to the untreated ones.
Słowa kluczowe
Rocznik
Strony
216--227
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
  • Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez, Morocco
  • Higher Institute of Maritime Fisheries, Agadir, Morocco
  • Laboratory of Biotechnology, Materials and Environment, Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
  • Laboratory of Biotechnology, Materials and Environment, Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
Bibliografia
  • 1. Abbas T., Rizwan M., Ali S., Zia-ur-Rehman M., Farooq Qayyum M., Abbas F., Hannan F., Rinklebe J., Sik Ok Y. 2017. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol. Environ. Saf., 140, 37–47. https://doi.org/10.1016/j.ecoenv.2017.02.028
  • 2. Abideen Z., Koyro H.W., Huchzermeyer B., Ansari R., Zulfiqar F., Gul B. 2020. Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biol., 22, 259–266. https://doi.org/10.1111/plb.13054
  • 3. Aebi H. 1984. Catalase in Vitro. Methods Enzymol., 105, 121–126. https://doi.org/10.1016/S0076–6879(84)05016–3
  • 4. Ain-Lhout F., Zunzunegui M., Diaz Barradas M.C., Tirado R., Clavijo A., Garcia Novo F. 2001. Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil, 2302(230), 175–183. https://doi.org/10.1023/A:1010387610098
  • 5. Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 391(39), 205–207. https://doi.org/10.1007/BF00018060
  • 6. Baxter A., Mittler R., Suzuki N. 2014. ROS as key players in plant stress signalling. J. Exp. Bot. 65, 1229–1240. https://doi.org/10.1093/jxb/ert375
  • 7. Beauchamp C., Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44, 276–287. https://doi.org/10.1016/0003–2697(71)90370–8
  • 8. Blakemore L.C., Searle P.L., Daly B.K. 1981. Methods for chemical analysis of soils.
  • 9. Bouqbis L., Daoud S., Claudia H.K., Kammann I. 2016. Biochar from argan shells: production and characterization. Int. J. Recycl. Org. Waste Agric. https://doi.org/10.1007/s40093–016–0146–2
  • 10. Brockhoff S.R., Christians N.E., Killorn R.J., Horton R., Davis D.D. 2010. Physical and MineralNutrition Properties of Sand-Based Turfgrass Root Zones Amended with Biochar. Agron. J., 102, 1627–1631. https://doi.org/10.2134/agronj2010.0188
  • 11. Carey D.E., McNamara P.J., Zitomer D.H. 2015. Biochar from Pyrolysis of Biosolids for Nutrient Adsorption and Turfgrass Cultivation. Water Environ. Res. A Res. Publ. Water Environ. Fed., 87, 2098–2106. https://doi.org/10.2175/106143015X14362865227391
  • 12. Chance B., Maehly A.C. 1955. Assay of catalases and peroxidases. {black small square}. Methods Enzymol., 2, 764–775. https://doi.org/10.1016/S0076–6879(55)02300–8
  • 13. Cornelissen G., Martinsen V., Shitumbanuma V., Alling V., Breedveld G.D., Rutherford D.W., Sparrevik M., Hale S.E., Obia A., Mulder J. 2013. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia. Agronomy, 3, 256–274. https://doi.org/10.3390/agronomy3020256
  • 14. Corpas F.J., Gupta D.K., Palma J.M. 2015. Production Sites of Reactive Oxygen Species (ROS) in Organelles from Plant Cells. React. Oxyg. Species Oxidative Damage Plants Under Stress, 1–22. https://doi.org/10.1007/978–3-319–20421–5_1
  • 15. Cross A., Sohi S.P. 2011. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem., 43, 2127–2134. https://doi.org/10.1016/j.soilbio.2011.06.016
  • 16. Fetjah D., Ainlhout L., Ihssane B., Houari A., Idardare Z., Bouqbis L. 2021a. Biological, Physico-Chemical and Morphological Analyses of Four Biochars Derived from Agricultural Waste. J. Ecol. Eng., 22, 36–46. https://doi.org/10.12911/22998993/133964
  • 17. Fetjah D., Fatima L., Ainlhout E., Ihssane B., Bouqbis L. 2021b. Effect of Banana Waste Biochar on Physiological Responses and Growth of Seashore Paspalum, 22, 1–10.
  • 18. Fu Q.S., Yang R.C., Wang H.S., Zhao B., Zhou C.L., Ren S.X., Guo Y.-D. 2013. Leaf morphological and ultrastructural performance of eggplant (Solanum melongena L.) in response to water stress. Photosynthetica, 51, 109–114. https://doi.org/10.1007/s11099–013–0005–6
  • 19. Ghassemi-Golezani K., Farhangi-Abriz S. 2019. Biochar alleviates fluoride toxicity and oxidative stress in safflower (Carthamus tinctorius L.) seedlings. Chemosphere, 223, 406–415. https://doi.org/10.1016/j.chemosphere.2019.02.087
  • 20. Glaser B., Lehmann J., Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – A review. Biol. Fertil. Soils, 35, 219–230. https://doi.org/10.1007/s00374–002–0466–4
  • 21. Hafez Y., Attia K., Alamery S., Ghazy A., Al-Doss A., Ibrahim E., Rashwan E., El-Maghraby L., Awad A., Abdelaal K. 2020. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of waterstressed barley plants. Agronomy, 10, 1–18. https://doi.org/10.3390/agronomy10050630
  • 22. Hussain M., Malik M.A., Farooq M., Ashraf M.Y., Cheema M.A. 2008. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci., 194, 193–199. https://doi.org/10.1111/j.1439–037X.2008.00305.x
  • 23. Husson F., Lê S., Mazet J. 2007. FactoMineR: Factor analysisand data mining with R (Version 1.09.) (software). Availablefromhttp://factominer.free.fr
  • 24. Ibitayo O., Jd B., Mj B. 1981. Cold Hardiness Of Bermudagrass And Paspalum Vaginatum Sw. Cold Hardiness Bermudagrass Paspalum Vaginatum Sw.
  • 25. Ibrahim M., Li G., Chan F.K.S., Kay P., Liu X.X., Firbank L., Xu Y.Y. 2019. Biochars effects potentially toxic elements and antioxidant enzymes in Lactuca sativa L. grown in multi-metals contaminated soil. Environ. Technol. Innov., 15, 100427. https://doi.org/10.1016/j.eti.2019.100427
  • 26. Jaiswal A.K., Alkan N., Elad Y., Sela N., Philosoph A.M., Graber E.R., Frenkel O. 2020. Molecular insights into biochar-mediated plant growth promotion and systemic resistance in tomato against Fusarium crown and root rot disease. Sci. Rep., 10, 1–15. https://doi.org/10.1038/s41598–020–70882–6
  • 27. Kammann C.I., Linsel S., Gößling J.W., Koyro H.- W. 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil, 345, 195–210. https://doi.org/10.1007/s11104–011–0771–5
  • 28. Lehmann J., Pereira da Silva Jr J., Steiner C., Nehls T., Zech W., Glaser B. 2003a. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249, 343–357.
  • 29. Lehmann J., Silva Jr J.P., Steiner C., Nehls T., Zech W., Glaser B. 2003b. Nutrient availability and leaching an an archaeological Anthrosol and a Ferralsol. Plant Soil, 249, 343–357.
  • 30. Lichtenthaler H.K., 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, in: Methods in Enzymology, Plant Cell Membranes. Academic Press, 350–382.
  • 31. Liu Y., Lu H., Yang S., Wang Y. 2016. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. F. Crop. Res., 191, 161–167. https://doi.org/10.1016/j.fcr.2016.03.003
  • 32. Metson A.J. 1956. Methods of chemical analysis for soil survey samples. Agron. J., 12, 208. https://doi.org/https://doi.org/10.2134/agronj1957.000219 62004900040024x
  • 33. Nakano Y., Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • 34. Nikpour-Rashidabad N., Tavasolee A., Torabian S., Farhangi-Abriz S. 2019. The effect of biochar on the physiological, morphological and anatomical characteristics of mung bean roots after exposure to salt stress. Arch. Biol. Sci., 71, 321–327.
  • 35. Pagès J. 2004. Multiple factor analysis: Main features and application to sensory data. Revista Colombiana de Estadística, 27(1).
  • 36. Paneque M., De la Rosa J.M., Franco-Navarro J.D., Colmenero-Flores J.M., Knicker H. 2016. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under nonirrigation conditions. Catena, 147, 280–287. https://doi.org/10.1016/j.catena.2016.07.037
  • 37. Rehman M., Liu L., Bashir S., Saleem M.H., Chen C., Peng D., Siddique K.H. 2019. Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. Plant Physiol. Biochem., 138, 121–129. https://doi.org/10.1016/j.plaphy.2019.02.021
  • 38. Sairam R.K., Rao K., Srivastava G.C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci., 163, 1037–1046. https://doi.org/10.1016/S0168–9452(02)00278–9
  • 39. Tanure M.M.C., da Costa L.M., Huiz H.A., Fernandes R.B.A., Cecon P.R., Pereira Junior J.D., da Luz J.M.R. 2019. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Res. 192, 164–173. https://doi.org/10.1016/j.still.2019.05.007
  • 40. Vaughn S.F., Dinelli F.D., Jackson M.A., Vaughan M.M., Peterson S.C. 2018. Biochar-organic amendment mixtures added to simulated golf greens under reduced chemical fertilization increase creeping bentgrass growth. Ind. Crops Prod., 111, 667–672. https://doi.org/https://doi.org/10.1016/j.indcrop.2017.11.036
  • 41. Wang Y., Pan F., Wang G., Zhang G., Wang Y., Chen X., Mao Z. 2014. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Sci. Hortic. (Amsterdam)., 175, 9–15. https://doi.org/10.1016/j.scienta.2014.05.029
  • 42. Xu Z., Zhou G. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass, 59, 3317–3325. https://doi.org/10.1093/jxb/ern185
  • 43. Zunzunegui M., Ruiz-Valdepeñas E., Sert M.A., Díaz-Barradas M.C., Gallego-Fernández J.B. 2020. Field comparison of ecophysiological traits between an invader and a native species in a Mediterranean coastal dune. Plant Physiol. Biochem., 146, 278–286. https://doi.org/10.1016/j.plaphy.2019.11.032
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-186f4894-7c87-4a00-8967-ed6f938a4d0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.