PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Portable exhaled breath analyzer employing fluctuation-enhanced gas sensing method in resistive gas sensors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a portable exhaled breath analyser, developed to detect selected diseases. The set-up employs resistive gas sensors: commercial MEMS sensors and prototype gas sensors made of WO3 gas sensing layers doped with various metal ingredients. The set-up can modulate the gas sensors by applying UV light to induce physical changes of the gas sensing layers. The sensors are placed in a tiny gas chamber of a volume of about 22 ml. Breath samples can be either injected or blown into the gas chamber when an additional pump is used to select the last breath phase. DC resistance and resistance fluctuations of selected sensors using separate channels are recorded by an external data acquisition board. Low-noise amplifiers with a selected gain were used together with a necessary bias circuit. The set-up monitors other atmospheric parameters interacting with the responses of resistive gas sensors (humidity, temperature, atmospheric pressure). The recorded data may be further analysed to determine optimal detection methods.
Rocznik
Strony
551--560
Opis fizyczny
Bibliogr. 31 poz., fot., rys., wykr.
Twórcy
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Byun, H.G., Yu, J.B., Huh, J.S., Lim, J.O. (2014). Exhaled Breath Analysis System based on Electronic Nose Techniques Applicable to Lung Diseases. Hanyang Medical Reviews, 34(3), 125-129.
  • [2] Konvalina, G., Haick, H. (2013). Sensors for breath testing: from nanomaterials to comprehensive disease detection. Accounts of chemical research, 47(1), 66-76.
  • [3] Bielecki, Z., Stacewicz, T., Wojtas, J., Mikołajczyk, J., Szabra, D., Prokopiuk, A. (2018). Selected optoelectronic sensors in medical applications. Opto-Electronics Review, 26(2), 122-133.
  • [4] Mikołajczyk, J., Wojtas, J., Bielecki, Z., Stacewicz, T., Szabra, D., Magryta, P., Panek, M. (2016). System of optoelectronic sensors for breath analysis. Metrol. Meas. Syst., 23(3), 481-489.
  • [5] Lentka, Ł., Smulko, J.M., Ionescu, R., Granqvist, C.G., Kish, L.B. (2015). Determination of gas mixture components using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst., 22(3), 341-350.
  • [6] Ederth, J., Smulko, J.M., Kish, L.B., Heszler, P., Granqvist, C.G. (2006). Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films. Sensors and Actuators B: Chemical, 113(1), 310-315.
  • [7] Lawal, O., Ahmed, W.M., Nijsen, T. M., Goodacre, R., Fowler, S.J. (2017). Exhaled breath analysis: a review of ‘breath-taking’methods for off-line analysis. Metabolomics, 13(10), 110.
  • [8] Szabra, D., Prokopiuk, A., Mikołajczyk, J., Ligor, T., Buszewski, B., Bielecki, Z. (2017). Air sampling unit for breath analyzers. Review of Scientific Instruments, 88(11), 115006.
  • [9] Wozniak, L., Kalinowski, P., Jasinski, G., Jasinski, P. (2018). FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under humidity interference. Microelectronics Reliability, 84, 163-169.
  • [10] Osowski, S., Siwek, K., Grzywacz, T., Brudzewski, K. (2014). Differential electronic nose in on-line dynamic measurements. Metrol. Meas. Syst., 21(4), 649-662.
  • [11] Smulko, J.M., Trawka, M., Granqvist, C.G., Ionescu, R., Annanouch, F., Llobet, E., Kish, L.B. (2015). New approaches for improving selectivity and sensitivity of resistive gas sensors: a review. Sensor Review, 35(4), 340-347.
  • [12] Trawka, M., Smulko, J., Hasse, L., Granqvist, C.G., Annanouch, F.E., Ionescu, R. (2016). Fluctuation enhanced gas sensing with WO3-based nanoparticle gas sensors modulated by UV light at selected wavelengths. Sensors and Actuators B: Chemical, 234, 453-461.
  • [13] http://www.tropsense.eu/en/index_en.php, 2018 (accessed 06.05.2018).
  • [14] http://www.sniffphone.eu/, 2018 (accessed 07.05.2018).
  • [15] Wang, X., Li, M., Ding, B., Liu, Y., Chen, T. (2017). UV-enhanced ethanol-sensing properties of TiO2-decorated ZnSnO3 hollow microcubes at low temperature. Journal of Materials Science: Materials in Electronics, 28(17), 12399-12407.
  • [16] Li, H., Gao, Z., Lin, W., He, W., Li, J., Yang, Y. (2017). Improving the sensitive property of graphene-based gas sensor by illumination and heating. Sensor Review, 37(2), 142-146.
  • [17] http://www.figaro.co.jp/en/product/entry/tgs8100.html, 2018 (accessed 06.05.2018).
  • [18] https://www.sgxsensortech.com/, 2018 (accessed 06.05.2018).
  • [19] https://www.digikey.com/product-detail/en/sensirion-ag/SGP30-2.5K/1649-1084-1-ND/7400967, 2018 (accessed 19.05.2018).
  • [20] Kotarski, M., Smulko, J. (2009). Noise measurement set-ups for fluctuations-enhanced gas sensing. Metrol. Meas. Syst., 16(3), 457-464.
  • [21] Ayhan, B., Kwan, C., Zhou, J., Kish, L.B., Benkstein, K.D., Rogers, P.H., Semancik, S. (2013). Fluctuation enhanced sensing (FES) with a nanostructured, semiconducting metal oxide film for gas detection and classification. Sensors and Actuators B: Chemical, 188, 651-660.
  • [22] Kalinowski, P., Woźniak, Ł., Strzelczyk, A., Jasinski, P., Jasinski, G. (2013). Efficiency of linear and non-linear classifiers for gas identification from electrocatalytic gas sensor. Metrol. Meas. Syst., 20(3), 501-512.
  • [23] Kish, L.B., Vajtai, R., Granqvist, C.G. (2000). Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues. Sensors and Actuators B: Chemical, 71(1), 55-59.
  • [24] Pardo, M., Sberveglieri, G. (2005). Classification of electronic nose data with support vector machines. Sensors and Actuators B: Chemical, 107(2), 730-737.
  • [25] Kaur, R., Kumar, R., Gulati, A., Ghanshyam, C., Kapur, P., Bhondekar, A.P. (2012). Enhancing electronic nose performance: A novel feature selection approach using dynamic social impact theory and moving window time slicing for classification of Kangra orthodox black tea (Camellia sinensis (L.) O. Kuntze). Sensors and Actuators B: Chemical, 166, 309-319.
  • [26] Staerz, A., Weimar, U., Barsan, N. (2016). Understanding the potential of WO3 based sensors for breath analysis. Sensors, 16(11), 1815.
  • [27] Zakrzewska, K. (2001). Mixed oxides as gas sensors. Thin Solid Films, 391, 229-238.
  • [28] Korotcenkov, G., Cho, B.K. (2013). Engineering approaches for the improvement of conductometric gas sensor parameters. Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sensors and Actuators B: Chemical, 188, 709-728.
  • [29] Sedlak, P., Sikula, J., Majzner, J., Vrnata, M., Fitl, P., Kopecky, D., Handel, P.H. (2012). Adsorption-desorption noise in QCM gas sensors. Sensors and Actuators B: Chemical, 166, 264-268.
  • [30] Kotarski, M.M., Smulko, J.M. (2010). Hazardous gases detection by fluctuation-enhanced gas sensing. Fluctuation and Noise Letters, 9(04), 359-371.
  • [31] Mingesz, R., Vadai, G., Gingl, Z. (2014). Power spectral density estimation for wireless fluctuation enhanced gas sensor nodes. Fluctuation and Noise Letters, 13(02), 1450011.
Uwagi
EN
1. This work was supported by Statutory Funds (Działalność Statutowa), Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Poland and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 645758 (“TROP-SENSE”).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1869e778-89f4-4b18-bd39-76a1f2da9bc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.