PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of all hydrodynamically stable and easily predictable conditions in various bubble columns

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wyznaczenie łatwo przewidywalnych i hydrodynamicznie stabilnych warunków w różnych kolumnach barbotażowych
Języki publikacji
EN
Abstrakty
EN
The reliable operation of bubble columns depends on the selection of hydrodynamically stable conditions. They have been defined based on the fully predictable behavior of an identification parameter in a certain gas velocity range. In order to define these stable conditions, three key parameters (Kolmogorov entropy, new hybrid index and information entropy) have been extracted from various intrusive and nonintrusive measurements in water, ethanol, therminol LT and benzonitrile.
PL
Optymalny zakres pracy kolumn barbotażowych zależy od wyboru warunków hydrodynamicznej stabilności. Warunki te zostały zdefiniowane w oparciu o całkowitą przewidywalność zachowania się parametru charakterystycznego w określonym zakresie prędkości gazu. W celu identyfikacji warunków stabilności wyodrębniono z różnych inwazyjnych i nieinwazyjnych pomiarów w wodzie, etanolu, terminolu LT i benzonitrylu trzy kluczowe parametry – entropię Kołmogorowa, nowy indeks hybrydowy i entropię informacji.
Rocznik
Tom
Strony
5--32
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Barati-Harooni, A., Jamialahmadi, M., 2021. Experimental investigation and correlation of the effect of carbon nanotubes on bubble column fluid dynamics: gas holdup, flow regime transition, bubble size and bubble rise velocity. Int. J. Multiph. Flow, 139, 103647. DOI: 10.1016/j.ijmultiphaseflow.2021.103647.
  • [2] Kantarci, N., Borak, F., Ulgen, K. O., 2005. Bubble column reactors. Process Biochem., 40 (7), 2263–2283. DOI: 10.1016/j.procbio.2004.10.004.
  • [3] Manjrekar O. N., Duduković, M. P., 2019. Identification of flow regime in a bubble column reactor with a combination of optical probe data and machine learning technique. Chem. Eng. Sci., X(2), 100023, DOI: 10.1016/j.cesx.2019.100023.
  • [4] Vial, C., Poncin, S., Wild, G., Midoux, N., 2001. A simple method for regime identification and flow characterisation in bubble columns and airlift reactors. Chem. Eng. Process., 40(2), 135–151, 2001, DOI: 10.1016/S0255-2701(00)00133-1.
  • [5] Nedeltchev, S., Hampel, U., Schubert, M., 2016. Investigation of the radial effect on the transition velocities in a bubble column based on the modified shannon entropy. Chem. Eng. Res. Des., 115, 303–309. DOI: 10.1016/j.cherd.2016.08.011.
  • [6] Lucas D., Ziegenhein, T., 2019. Influence of the bubble size distribution on the bubble column flow regime. Int. J. Multiph. Flow, 120, 103092, DOI: 10.1016/j.ijmultiphaseflow.2019.103092.
  • [7] Olmos, E., Gentric, C., Poncin, S., Midoux, N., 2003. Description of flow regime transitions in bubble columns via laser Doppler anemometry signals processing. Chem. Eng. Sci., 58 (9), 1731–1742, DOI: 10.1016/S0009-2509(03)00002-2.
  • [8] Leonard, C.. Ferrasse, J.-H., Boutin, O., Lefevre, S., Viand, A., 2015. Bubble column reactors for high pressures and high temperatures operation. Chem. Eng. Res. Des., 100, 391–421, DOI: http://dx.doi.org/10.1016/j.cherd.2015.05.013.
  • [9] De Swart, J. W. A., Van Vliet, R. E., Krishna, R., 1996. Size, structure and dynamics of ‘large’ bubbles in a two-dimensional slurry bubble column. Chem. Eng. Sci., 51 (20), 4619–4629, DOI: 10.1016/0009-2509(96)00265-5.
  • [10] Bhole, M. R., Joshi, J. B., 2005. Stability analysis of bubble columns: predictions for regime transition. Chem. Eng. Sci., 60 (16), 4493–4507, DOI: 10.1016/j.ces.2005.01.004.
  • [11] Krishna, R., 2000. A scale-up strategy for a commercial scale bubble column slurry reactor for fischer-tropsch synthesis. Oil Gas Sci. Technol., 55 (4), 359–393, DOI: 10.2516/ogst:2000026.
  • [12] Nedeltchev, S., Top, Y., Hlawitschka, M., Schubert, M., Bart, H.-J., 2020. Identification of the regime boundaries in bubble columns based on the degree of randomness in the signals. Can. J. Chem. Eng., 98(7), 1607–1621, DOI: 10.1002/cjce.23719.
  • [13] Besagni, G., Inzoli, F., 2017. The effect of liquid phase properties on bubble column fluid dynamics: gas holdup, flow regime transition, bubble size distributions and shapes, interfacial areas and foaming phenomena. Chem. Eng. Sci., 170, 270–296, DOI: 10.1016/j.ces.2017.03.043.
  • [14] Gan, Z. W., Yu, S. C. M., Law, A. W. K., 2011. Hydrodynamic stability of a bubble column with a bottom-mounted point air source. Chem. Eng. Sci., 66, 5338–5356, DOI: 10.1016/j.ces.2011.07.032.
  • [15] Van den Bleek, C. M., Schouten, J. C., 1993. Deterministic chaos: a new tool in fluidized bed design and operation. Chem. Eng. J., 53, 75-87.
  • [16] Schouten, J. C., Takens, F., Van den Bleek, C. M., 1994. Maximum-likelihood estimation of the entropy of an attractor, Phys. Rev. E Stat. Phys Plasmas Fluids Relat. Interdisc. Top., 49, 126-129.
  • [17] Letzel, H. M., Schouten, J. C., Krishna, R., Van den Bleek, C. M., 1997. Characterization of regimes and regime transitions in bubble columns by chaos analysis of pressure fluctuations. Chem. Eng. Sci., 52, 4447-4459.
  • [18] Nedeltchev, S., Rabha, S., Hampel, U., Schubert, M., 2015. A new statistical parameter for identifying the main transition velocities in bubble columns. Chem. Eng. Techn., 38(11), 1940-1946, DOI: 10.1002/ceat.201400728.
  • [19] Nedeltchev, S., Shaikh, A., Al-Dahhan, M., 2011. Flow regime identification in a bubble column via nuclear gauge densitometry and chaos analysis. Chem. Eng. Techn., 34(2), 225-233, DOI: 10.1002/ceat.201000308.
  • [20] Nedeltchev, S., Shaikh, A., Al-Dahhan, M., 2006. Flow regime identification in a bubble column based on both statistical and chaotic parameters applied to computed tomography data. Chem. Eng.Techn., 29(9), 1054-1060, DOI: 10.1002/ceat.200600162.
  • [21] Mörs, F., Ortloff, F. Graf, F., Kolb, T., 2019. Hydrodynamik in blasensäulen-messung von relativem gasgehalt und blasengröße. Chemie Ingenieur Tech., 91, 1059–1065.
  • [22] Reilly, I. G., Scott, D. S., De Bruijn, T. J. W., MacIntyre, D., 1994. The role of gas phase momentum in determining gas holdup and hydrodynamic flow regimes in bubble column operations. Can. J. Chem. Eng., 72, 3-12.
  • [23] Wilkinson, P. M., Spek, A. P., Van Dierendonck, L. L., 1992. Design parameters estimation for scale up of high pressure bubble columns. AIChE J., 38, 544-554.
  • [24] Wilkinson, P. M., Haringa, H., Van Dierendonck, L. L., 1994. Mass transfer and bubble size in a bubble column under pressure. Chem. Eng. Sci., 49, 1417-1427.
  • [25] Krishna, R., Ellenberger, J., 1996. Gas holdup in bubble column reactors operating in the churnturbulent flow regime. AIChE J. 42, 2627-2634.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18632307-9436-46b1-9784-60ddbe2e08e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.