PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Biological stability of water in water distribution systems. The effect of water treatment trials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research into the removal efficiency of biogenic substances, necessary for the growth of heterotrophic microorganisms, was carried out for the following water treatment trials: surface water, infiltrative water and mixed surface water after microsieving with aerated underground water. The results have shown that the efficiency of removal of organic substances, independently of the type of treated water, increased along with the organic carbon concentrations in raw water. The average effectiveness of phosphate removal was: 92.1%, 88.8% and 83.7% for surface, infiltrative and mixed water, respectively. In all analyzed systems, presence of phosphates was an limiting factor for the regrowth of microorganisms in the distribution system. In none of the water treatment trials, effective removal of inorganic nitrogen has been recorded.
Rocznik
Strony
147--157
Opis fizyczny
Bibliogr. 23 poz., tab., rys.
Twórcy
autor
  • Wrocław University of Technology, Department of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 53-370 Wrocław
Bibliografia
  • [1] BUCHELI-WITSCHEL M., KÕTZSCH S., DARR S., WIDLER R., EGLI T., A new method to assess the influence of migration from polymeric materials on the biostability of drinking water, Water Res., 2012, 46 (13), 4246.
  • [2] SRINIVASAN S., HARRINGTON G.W., Biostability analysis for drinking water distribution systems, Water Res., 2007, 41 (10), 2127.
  • [3] HEIN J., VAN LIEVERLOO M., HOOGENBOEZEM W., VEENENDAAL G., VAN DER KOOIJ D., Variability of invertebrate abundance in drinking water distribution systems in the Netherlands in relation to biostability and sediment volumes, Water Res., 2012, 46 (16), 4918.
  • [4] THAYANUKUL P., KURISU F., KASUGA I., FURUMAI H., Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems, Water Res., 2013, 47 (1), 225.
  • [5] NKAMBULE T.I., KRAUSE R.W.M., HAARHOFF J., MAMBA B.B., Treatability and characterization of natural organic matter (NOM) in South African waters using newly developed methods, Phys. Chem. Earth, 2011, 36 (14–15), 1159.
  • [6] PARSONS S.A., JEFFERSON B., GOSLAN E.H., JARVIS P.R., FEARING D.A., Natural organic matter – the relationship between character and treatability, Water Sci. Technol.: Water Supply, 2004, 4 (5–6), 43.
  • [7] MOHAMMADI S., MOVAHEDIAN H., NIKAEEN M., Drinking water denitrification with autotrophic denitrifying bacteria in a fluidized bed bioreactor (FBBR), Fresenius Environ. Bull., 2011, 20 (9), 2427.
  • [8] LEE O., HOWE K.J., THOMSON B.M., Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wstewater, Water Res., (2012, 46 (4), 1005.
  • [9] KASPRZYK-HORDERN B., RACZYK-STANISŁAWIAK U., NAWROCKI J., Use of catalytic ozonation over alumina for natural organic mater removal from water, Ochr. Środ., 2006, 28 (1), 23 (in Polish).
  • [10] SIMON F.X., RUDÉ E., LLORENS J., BAIG S., Study on the removal of biodegradable NOM from seawater using biofiltration, Desalination, 2013, 316 (5), 8.
  • [11] ZHANG S., ZHANG J., WANG W., LI F., CHENG X., Removal of phosphate from landscape water using an electrocoagulation process powered directly by photovoltaic solar module, Solar Energ. Mater. Solar Cells, 2013, 117 (10), 73.
  • [12] BHATNAGARA A., SILLANPÄÄ M., A review of emerging adsorbents for nitrate removal from water, Chem. Eng. J., 2011, 168 (2), 493.
  • [13] CHANG E.E., CHIANG P.C., HSING H.Y., YEH S.Y., Removal of model organic precursors by coagulation, Pract. Period. Hazard., Toxic Rad. Waste Manage., 2007, 11 (1), 69.
  • [14] KALAJDŽIĆ B., HABUDA-STANIĆ M., ROMIĆ Ž., KULEŠ M., Removal of natural organic matter from groundwater using Fenton’s process, Global Nest J., 2013, 15 (1), 13.
  • [15] PERCIVAL S.L., KNAPP J.S., EDYVEAN R., WALES D.S., Biofilm development on stainless steel in mains water, Water Res., 1998, 32 (1), 243.
  • [16] LECHEVALLIER M.W., The case for maintaining a disinfectant residual, J. Amer. Water Works Assoc., 1999 (1), 86.
  • [17] NIQUETTE P., SERVAIS P., SAVOIR R., Bacterial dynamics in the drinking water distribution system of Brussels, Water Res., 2001, 35 (3), 675.
  • [18] CHU C., LU C., LEE C., Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems, J. Environ. Manage., 2005, 74 (3), 255.
  • [19] HAARHOFF J., KUBARE M., MAMBA B., KRAUSE R., NKAMBULE T., MATSEBULA B., MENGE J., NOM characterization and removal at six Southern African water treatment plants, Drin. Water Eng. Sci., 2010, 53 (3), 53.
  • [20] YU X., ZHANG X.J., WANG Z.S., Improving removal efficiency of organic matters by adding phosphorus in drinking water biofiltration treatment, Biomed. Environ. Sci., 2003, 16, 29.
  • [21] ZIAJAHROMI S., DARYABEIGI ZAND A., KHANIZADEH M., Nitrate removal from water using synthesis, nanoscale zero-valent iron (NZVI), Int. Conf. Applied Life Sciences (ICALS 2012) Turkey, September 10–12, 2012, 105.
  • [22] ŚWIDERSKA-BRÓŻ M., WOLSKA M., Variations in the biostability of infiltration water in the treatment train, Ochr. Środ., 2012, 34 (4), 63.
  • [23] RAWAT S.K., SINGH R.K., SINGH R.P., Remediation of nitrite contamination in ground and surface waters using aquatic macrophytes, J. Environ. Biol., 2012, 33 (1), 51
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18562aa8-31fe-4353-b6e8-e083b39de583
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.