PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of the dynamic modeling of 2-R robot actuated by (N) equally spaced planet-gears by using SolidWorks and MATLAB/SIMULINK

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industrial robots often use planetary gear system to have high joint torques; therefore, the influence of the rotary inertia of the number of the equally spaced planet-gears on the dynamical behavior of the robot is very important. The main objective of this paper is to develop the dynamic modeling of robot actuated by (n) equally spaced planet-gears in the case where the planet-carrier is fixed, no closed solution has been reported for this dynamic modeling, and to compare between the dynamic behavior of robot actuated by (n+1) and (n) equally spaced planet-gears for a same trajectory planning. The authors derive the explicit dynamic model for an elbow down of 2-R manipulator holding an external mass. Finally, the obtained simulation results by using Matlab/Simulink of the dynamic modeling are verified by modeling the same robot and using an advanced simulation via SolidWorks (2014).
Rocznik
Strony
1497--1510
Opis fizyczny
Bibliogr. 34 poz., 1 il. kolor., rys., wykr.
Twórcy
autor
  • University Center of Tissemsilt, Laboratory of Structures Blida1 University, Algeria
autor
  • University Center of Tissemsilt, Laboratory of Structures Blida1 University, Algeria
autor
  • Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
autor
  • Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP), Malaysia
Bibliografia
  • [1] Giancarlo, G.: Actuators and Sensors Introduction to the Mechanics of Space Robots, Space Technology Library, Volume26 Springer, 427-482, 2012.
  • [2] Oriol, G., Lucio, F.: Actuator Principles and Classification Design Rules for Actuators in Active Mechanical Systems, Springer, 3-28, 2010.
  • [3] Gomis, O.: Design, modeling, identification and control of mechatronic systems, PhD thesis, Technical University of Catalonia, 2007.
  • [4] Gomis, O., Galceran, S., Sudri`a, A., Montesinos, D.: Linear electromagnetic actuator modeling for optimization of mechatronic and adaptronic systems, Campanile LF, 2007.
  • [5] Reza, N.: Theory of Applied Robotics Kinematics, Dynamics, and Control, 2nd Edition Springer, 2010.
  • [6] Bruno, S., Lorenzo, S., Giuseppe, O.: Robotics Modelling, Planning and Control, Springer, 2009.
  • [7] Bridges, M., Dawson, D.: Redesign of robust controllers for rigid link flexible joint robotic manipulators actuated with harmonic drive gearing, IEE Proceedings Control Theory and Applocations, 142, 5, September, 1995.
  • [8] Bruno, S., Lorenzo, S., Luigi, V.: Lagrange and Newton-Euler dynamic modeling of a gear-driven robot manipulator with inclusion of motor inertia effects, Advanced Robotics, 1995.
  • [9] Gyula, M., Szilvester, P., Gizella, P., Zolth, J.: Flexible Planetary Gear Drives In Robotics, IEEE International Conference on Industrial Electronics, Control, Instrumentation ,Automation, Power Electronics and Motion Control, 1992.
  • [10] Koichi, K., Akira, I.: Artificial Hand Based on the Planetary Gear System - Realization of Daily Utility Motion of a Hand with Minimum Actuators, IEEE International Conference on Mechatronics and Automation ICMA, 2013.
  • [11] Hoyul, L., Youngjin, C.: A New Actuator System Using Dual-Motors and a Planetary Gear, IEEE/ASME Transactions Mechatronics, 2012.
  • [12] Yan, C., Xin, W., Jing J.: Influence of the Sun Gear on the Dynamical Behavior of Planetary Gear Train, IEEE International Conference on Intelligent Human-Machine Systems and Cybernetics, 2009.
  • [13] Murphy, S., Wen, J., Saridis, G.: Recursive calculation of geared robot manipulator dynamics, IEEE Proceedings International Conference on Robotics and Automation, 1990.
  • [14] Paul, R.: Mathematics, Programming, and Control, Robot Manipulators The MIT Press, Cambridge Mass, 1981.
  • [15] Asada, H., Slotine, H.: Robot Analysis and Control, John Wiley and Sons, 1986.
  • [16] Spong, M.: Modeling and Control of Elastic Joint Robots, Journal of Dynamic Systems, Measurement, and Control, 1987.
  • [17] Lugner, A., Desoyer, K.: Equations of Motion of Manipulators Including Dynamic Effects of Active Elements, IFAC Symposium on Robot Control (SYROC0’85), 1985.
  • [18] Chen, J.: The Effects of Gear Reduction on Robot Dynamics, Proceedings of the NASA Conference on Space Tele-robotics, 1989.
  • [19] Walker, M., Orin, D.: Efficient Dynamic Computer Simulation of Robotic Mechanisms. Journal of Dynamic Systems, Measurement, and Control, 1982.
  • [20] John, J.: Introduction to robotics Mechanics and control. Third edition, 2005.
  • [21] Corke, P.: A robotics toolbox for MATLAB, IEEE Robotics & Automation Magazine 1996.
  • [22] Sisir, K.: On the dynamics of SCARA robot, Robotics and Autonomous Systems, 1992.
  • [23] Gasparetto,A., Lanzutti,A., Vidoni,R., Zanotto,V.: Experimental validation and comparative analysis of optimal time-jerk algorithms for trajectory planning, Robotics and Computer-Integrated Manufacturing, 2012.
  • [24] Barre, P., Bearee, R., Borne, P., Dumetz, E.: Influence of a jerk controlled movement lawon the vibratory behaviour of high-dynamics systems, Journal of Intelligent and Robotic Systems, 2005.
  • [25] Sonja, M., Elizabeth, A.: Jerk Bounded Manipulator Trajectory Planning Design for Real Time Applications, IEEE Transactions On Robotics And Automation, 2003.
  • [26] Piazzi, A., Visioli, A.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Transactions on Industrial Electronics, 2000.
  • [27] Fernini, B., Temmar, M.: An algorithm for serial planar manipulators that have an architecture R// (n) R by using Solidworks (2013) and Matlab/Simulink (2012), IEEE International Confrence on Mechatronics and Automation ICMA, 2013.
  • [28] Gouasmi, M., Ouali, M., Fernini, B., Meghatria, M.: Kinematic modeling and simulation of a 2-R robot using Solidworks and verification by Matlab/Simulink, International Journal of Advanced Robotic Systems, 2012.
  • [29] Fernini, B., Temmar, M.: Dynamic Behavior of a SCARA Robot by using NE Method for a Straight Line and Simulation of Motion by using Solidworks and Verification by Matlab/Simulink, International Journal of Robotics and Automation, 2014.
  • [30] Fernini, B., Temmar, M.: The Effect of Mono and Biarticular Muscles on the Dynamic of Waliking Bipedal Robot, IEEE INTELLISYS, 2017.
  • [31] Fernini, B., Temmar, M., Noor, MM.: Toward a Dynamic Analysis of Bipedal Robots Inspired By Human Leg Muscles, Journal of Mechanical Engineering and Sciences, 2018.
  • [32] Fernini, B., Temmar, M.: The Positions Effect of Biarticular Muscles on the Walking Fatigue of Bipedal Robots, Receuil De Mecanique, 2016.
  • [33] Gouasmi, M., Ouali, M., Fernini, B.: Robot Kinematics Using Dual Quaternions, International Journal of Robotics and Automation, 2012.
  • [34] Fernini, B.: Kinematic Modeling and Simulation of a 2-R Robot Using Solidworks and Verification by Matlab/Simulink, International Journal of Robotics and Automation, 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18552776-1217-4124-b32e-3bc3f55a9511
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.