Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wykrywanie i klasyfikacja usterek systemów fotowoltaicznych z wykorzystaniem sieci neuronowych
Języki publikacji
Abstrakty
With the growth of solar energy plants and their importance in the world, a fault diagnosis of photovoltaic systems has become an essential task to perform in order to protect the user and PV system components, in addition to increasing energy productivity. This paper presents an efficient neural network method for detecting and classifying different faults in PV system. These faults can occur in a PV array or boost converter. A simple feed forward neural network feed with meteorological parameters (Irradiance and Temperature) together with electrical data (Voltage and Current) has proven its effectiveness to identify common faults in PV system with very high accuracy. This is done by simulation in the Matlab Simulink environment.
Wraz z rozwojem elektrowni słonecznych i ich znaczeniem na świecie, diagnostyka usterek systemów fotowoltaicznych stała się podstawowym zadaniem do wykonania w celu ochrony użytkownika i komponentów systemu PV, a także zwiększenia wydajności energetycznej. W artykule przedstawiono wydajną metodę sieci neuronowych do wykrywania i klasyfikacji różnych uszkodzeń w systemie PV. Te usterki mogą wystąpić w panelu fotowoltaicznym lub przetwornicy podwyższającej napięcie. Proste zasilanie sieci neuronowej ze sprzężeniem zwrotnym z parametrami meteorologicznymi (natężenie promieniowania i temperatura) wraz z danymi elektrycznymi (napięcie i prąd) dowiodło swojej skuteczności w identyfikowaniu typowych usterek w systemie fotowoltaicznym z bardzo dużą dokładnością. Odbywa się to poprzez symulację w środowisku Matlab Simulink.
Wydawca
Czasopismo
Rocznik
Tom
Strony
157--162
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Smart Grids and Renewable Energies Laboratory, University Tahri Mohammed of Béchar Street; PO Box 417 Béchar 08000 Béchar, Algeria
autor
- Department of Electrical Engineering, Faculty of Technology, University of M’sila,Street, City, CountryBP 166 Ichbilia, M’sila, Algeria
autor
- Smart Grids and Renewable Energies Laboratory, University Tahri Mohammed of Béchar. Street; PO Box 417 Béchar 08000 Béchar, Algeria
autor
- Unitée Recherche en Energies Renouvelables en Milieu Saharien, URERMS, Centre de Développement des Energies Renouvelables, CDER 01000Adrar, Algeria
Bibliografia
- [1] S. Samara and E. Natsheh, “Intelligent PV panels fault diagnosis method based on NARX network and linguistic fuzzy rule-based systems,” Sustain., vol. 12, (2020. no. 5,
- [2] A. Djalab, N. Bessous, M. M. Rezaoui, and I. Merzouk, “Study of the Effects of Partial Shading on PV Array,” Proc. - Int. Conf. Commun. Electr. Eng. ICCEE 2018(2019), pp. 6–10,.
- [3] S. Shapsough, R. Dhaouadi, and I. Zualkernan, “Using linear regression and back propagation neural networks to predict performance of soiled PV modules,” Procedia Comput. Sci., vol. 155, (2019), no. 2018, pp.463–470.
- [4] M. Sabbaghpur Arani and M. A. Hejazi, “The comprehensive study of electrical faults in PV arrays,” J. Electr. Comput. Eng, (2016),vol. 2016.
- [5] R. G. Vieira, M. Dhimish, F. M. U. de Araújo, and M. I. S. Guerra, “PV module fault detection using combined artificial neural network and sugeno fuzzy logic,” Electron., vol. 9, (2020),No. 12, pp. 1–21,
- [6] E. Ribeiro, A. J. M. Cardoso, and C. Boccaletti, “Fault-tolerant strategy for a photovoltaic DC-DC converter,” IEEE Trans. Power Electron, vol. 28, (2013), No. 6, pp. 3008–3018.
- [7] F. Salem and M. A. Awadallah, “Detection and assessment of partial shading in photovoltaic arrays,” J. Electr. Syst. Inf. Technol., vol. 3, No. 1, pp. 23–32.
- [8] M. Hussain, M. Dhimish, S. Titarenko, and P. Mather, “Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters,” Renew. Energy, vol. 155, (2020), pp. 1272–1292.
- [9] M. Hussain, M. Dhimish, S. Titarenko, and P. Mather, “Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters,” Renew. Energy, vol. 155, (2020),No. A, pp. 1272–1292.
- [10] Y. Chouay and M. Ouassaid, “An intelligent method for fault diagnosis in photovoltaic systems,” Proc. 2017 Int. Conf. Electr. Inf. Technol. ICEIT 2017, vol. 2018,(2019), pp. 1–5.
- [11] M. A. Zdiri, B. Bouzidi, O. Kahouli, and H. H. Abdallah, “Fault Detection Method for Boost Converters in Solar PV Systems,” 19th Int. Conf. Sci. Tech. Autom. Control Comput. Eng. STA (2019), pp. 237–242.
- [12] S. Sheik Mohammed, D. Devaraj, and T. P. Imthias Ahamed, “Modeling, simulation and analysis of photovoltaic modules under partially shaded conditions,” Indian J. Sci. Technol, vol. 9, (2016),No. 16.
- [13] S. Motahhir, A. El Ghzizal, S. Sebti, and A. Derouich, “MIL and SIL and PIL tests for MPPT algorithm,” Cogent Eng., vol. 4,(2017),No. 1.
- [14] M. Abdelsattar, “Study, Design and Performance Analysis of Grid-Connected Photovoltaic Power Systems Multiprocessor Implementations of Digital Controllers View project,”, Minia University, Electrical Engineering Dept, Faculty of Engineering, Egypt, PhD Thesis, (2015).
- [15] N. Hashim, Z. Salam, D. Johari, and N. F. Nik Ismail, “DC-DC Boost Converter Design for Fast and Accurate MPPT Algorithms in Stand-Alone Photovoltaic System,” Int. J. Power Electron. Drive Syst., vol. 9, (2018), No. 3, p. 1038,.
- [16] S. Motahhir, A. El Ghzizal, S. Sebti, and A. Derouich, “Modeling of Photovoltaic System with Modified Incremental Conductance Algorithm for Fast Changes of Irradiance,” Int. J. Photoenergy, vol. 2018, (2018).
- [17] T. Berghout, M. Benbouzid, T. Bentrcia, X. Ma, S. Djurović, and L. H. Mouss, “Machine learning-based condition monitoring for pv systems: State of the art and future prospects,” Energies, vol. 14, (2021),No.19, pp. 1–24,.
- [18] K. Abdulmawjood, S. S. Refaat, and W. G. Morsi, “Detection and prediction of faults in photovoltaic arrays: A review,” Proc. - 2018 IEEE 12th Int. Conf. Compat. Power Electron. Power Eng. CPE-POWERENG 2018,( 2018), pp. 1–8.
- [19] T. Pei and X. Hao, “A fault detection method for photovoltaic systems based on voltage and current observation and evaluation,” Energies, vol. 12,( 2019),No. 9.
- [20] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, 2018,No. 11.
- [21] S. Abirami and P. Chitra, “Energy-efficient edge based real-time healthcare support system,” in Advances in Computers, vol. 117, (2020), No.1, Academic Press Inc, pp. 339–368.
- [22] H. Mekki, A. Mellit, and H. Salhi, “Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules,” Simul. Model. Pract. Theory, vol. 67, (2016), pp. 1–13,
- [23] A. Kulkarni, D. Chong, and F. A. Batarseh, “Foundations of data imbalance and solutions for a data democracy,” Data Democr. Nexus Artif. Intell. Softw. Dev. Knowl. Eng. Jan. (2020), pp. 83–106.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18501824-6618-46e8-a572-a4ecc0126935