Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-184f7782-dd0b-4634-afb6-dde98700404a

Czasopismo

Journal of KONES

Tytuł artykułu

Laminar burning velocity predictions of single-fuel mixtures of C1-C7 normal hydrocarbon and air

Autorzy Jach, A.  Żbikowski, M.  Teodorczyk, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The numerical modelling of combustion phenomena is an important task due to safety issues and development and optimization of engines. Laminar burning velocity (LBV) is one of the most important physical properties of a flammable mixture. Knowing its exact value if crucial for assessment of flame stabilization, turbulent flame structure. It influences strongly safety, probability of knocking combustion and it is one of parameters used for assessment and development of detailed chemical kinetic mechanisms. Hence, the goal of this work is to develop models by means of Machine Learning algorithms for predicting laminar burning velocities of single-fuel C1-C7 normal hydrocarbon and air mixtures. Development of the models is based on a large experimental data set collected from literature. In total more than 1000, LBVs were accumulated for hydrocarbons from methane up to n-heptane. The models are developed in MATLAB 2018a with use of Machine Learning toolbox. Algorithms taken into account are multivariate regression, support vector machine, and artificial neural network. Performance of the models is compared with most widely used detailed chemical kinetics mechanisms’ predictions obtained with use of LOFEsoft. These kind of models might be efficiently used in CFD combustion models based on flamelet approach. The main advantage in comparison to chemical kinetics calculation is much shorter computational time needed for computations of a single value and comparable performance in terms of R2 (coefficient of determination), RMSE (root-mean-square error) and MAE (mean absolute error).
Słowa kluczowe
EN laminar burning velocity   hydrocarbon   machine learning   LOGEsoft   alkane   MATLAB  
Wydawca Institute of Aviation
Czasopismo Journal of KONES
Rocznik 2018
Tom Vol. 25, No. 3
Strony 227--235
Opis fizyczny Bibliogr. 45 poz., rys.
Twórcy
autor Jach, A.
  • Warsaw University of Technology, Institute of Heat Engineering Nowowiejska Street 21/25, 00-665 Warsaw, Poland tel.: +48 22 2345266, +48 22 2345241, +48 22 2345226
autor Żbikowski, M.
  • Warsaw University of Technology, Institute of Heat Engineering Nowowiejska Street 21/25, 00-665 Warsaw, Poland tel.: +48 22 2345266, +48 22 2345241, +48 22 2345226
autor Teodorczyk, A.
  • Warsaw University of Technology, Institute of Heat Engineering Nowowiejska Street 21/25, 00-665 Warsaw, Poland tel.: +48 22 2345266, +48 22 2345241, +48 22 2345226
Bibliografia
[1] Kelley, A. P., Smallbone, A. J., Zhu, D. L., Law, C. K., Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch sensitivity, Proc. Combust. Inst., Vol. 33, No. 1, pp. 963-970, 2011.
[2] Smallbone, A. J., Liu, W., Law, C. K., You, X. Q., Wang, H., Experimental and modelling study of laminar flame speed and non-premixed counterflow ignition of n-heptane, Proc. Combust. Inst., Vol. 32, No. 1, pp. 1245-1252, 2009.
[3] Veloo, P. S., Wang, Y. L., Egolfopoulos, F. N., Westbrook, C. K., A comparative experimental and computational study of methanol, ethanol, and n-butanol flames, Combust. Flame, Vol. 157, No. 10, pp. 1989-2004, 2010.
[4] Bosschaart, K. J., De Goey, L. P. H., The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method, Combust. Flame, Vol. 136, No. 3, pp. 261-269, 2004.
[5] Goswami, M., Bastiaans, R. J. M., de Goey, L. P. H., Konnov, A. A., Experimental and modelling study of the effect of elevated pressure on ethane and propane flames, Fuel, Vol. 166, pp. 410-418, 2016.
[6] Mathieu, O., Goulier, J., Gourmel, F., Mannan, M. S., Chaumeix, N., Petersen, E. L., Experimental study of the effect of CF3I addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane, Proc. Combust. Inst., Vol. 35, No. 3, pp. 2731- -2739, 2015.
[7] Jomaas, G., Zheng, X. L., Zhu, D. L., Law, C. K., Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures, Proc. Combust. Inst., Vol. 30, No. 1, pp. 193-200, 2005.
[8] Veloo, P. S., Egolfopoulos, F. N., Studies of n-propanol, iso-propanol, and propane flames, Combust. Flame, Vol. 158, No. 3, pp. 501-510, 2011.
[9] Tang, C., Zheng, J., Huang, Z., Wang, J., Study on nitrogen diluted propane–air premixed flames at elevated pressures and temperatures, Energy Convers. Manag., Vol. 51, No. 2, pp. 288-295, 2010.
[10] Davis, S. G., Law, C. K., Wang, H., Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames, Combust. Flame, Vol. 119, No. 4, pp. 375-399, 1999.
[11] Konnov, A. A., Dyakov, I. V., De Ruyck, J., Measurement of adiabatic burning velocity in ethane–oxygen–nitrogen and in ethane–oxygen–argon mixtures, Exp. Therm. Fluid Sci., Vol. 27, No. 4, pp. 379-384, 2003.
[12] Hermanns, R. T. E., Konnov, A. A., Bastiaans, R. J. M., de Goey, L. P. H., Lucka, K., Köhne, H., Effects of temperature and composition on the laminar burning velocity of CH4 + H2 + O2 + N2 flames, Fuel, Vol. 89, No. 1, pp. 114-121, 2010.
[13] Jerzembeck, S., Peters, N., Pepiot-Desjardins, P., Pitsch, H., Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation, Combust. Flame, Vol. 156, No. 2, pp. 292-301, 2009.
[14] Goswami, M., Derks, S. C. R., Coumans, K., Slikker, W. J., de Andrade Oliveira, M. H., Bastiaans, R. J. M., Luijten, C. C. M., de Goey, L. P. H., Konnov, A. A., The effect of elevated pressures on the laminar burning velocity of methane+air mixtures, Combust. Flame, Vol. 160, No. 9, pp. 1627-1635, 2013.
[15] Wu, Y., Modica, V., Rossow, B., Grisch, F., Effects of pressure and preheating temperature on the laminar flame speed of methane/air and acetone/air mixtures, Fuel, Vol. 185, pp. 577-588, 2016.
[16] Park, O., Veloo, P. S., Liu, N., Egolfopoulos, F. N., Combustion characteristics of alternative gaseous fuels, Proc. Combust. Inst., Vol. 33, No. 1, pp. 887-894, 2011.
[17] Rozenchan, G., Zhu, D. L., Law, C. K., Tse, S. D., Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm, Proc. Combust. Inst., Vol. 29, No. 2, pp. 1461-1470, 2002.
[18] Hassan, M. I., Aung, K. T., Faeth, G. M., Measured and predicted properties of laminar premixed methane/air flames at various pressures, Combust. Flame, Vol. 115, No. 4, pp. 539-550, 1998.
[19] Gu, X. J., Haq, M. Z., Lawes, M., Woolley, R., Laminar burning velocity and Markstein lengths of methane–air mixtures, Combust. Flame, Vol. 121, No. 1-2, pp. 41-58, 2000.
[20] Mitu, M., Giurcan, V., Razus, D., Oancea, D., Inert gas influence on the laminar burning velocity of methane-air mixtures, J. Hazard. Mater., Vol. 321, pp. 440-448, 2017.
[21] Cai, X., Wang, J., Zhang, W., Xie, Y., Zhang, M., Huang, Z., Effects of oxygen enrichment on laminar burning velocities and Markstein lengths of CH4/O2/N2 flames at elevated pressures, Fuel, Vol. 184, pp. 466-473, 2016.
[22] Bosschaart, K. J., Goey, L. P. H., Extension of the heat flux method to subatmospheric pressures, Combust. Sci. Technol., Vol. 176, No. 9, pp. 1537-1564, 2004.
[23] Troshin, K. Y., Borisov, A. A., Rakhmetov, A. N., Arutyunov, V. S., Politenkova, G. G., Burning velocity of methane-hydrogen mixtures at elevated pressures and temperatures, Russ. J. Phys. Chem. B, Vol. 7, No. 3, pp. 290-301, 2013.
[24] van Lipzig, J. P. J., Nilsson, E. J. K., de Goey, L. P. H., Konnov, A. A., Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures, Fuel, Vol. 90, No. 8, pp. 2773-2781, 2011.
[25] Powell, O. A., Papas, P., Dreyer, C., Laminar burning velocities for hydrogen-, methane-, acetylene-, and propane-nitrous oxide flames, Combust. Sci. Technol., Vol. 181, No. 7, pp. 917-936, 2009.
[26] Ravi, S., Sikes, T. G., Morones, A., Keesee, C. L., Petersen, E. L., Comparative study on the laminar flame speed enhancement of methane with ethane and ethylene addition, Proc. Combust. Inst., Vol. 35, No. 1, pp. 679-686, 2015.
[27] Zhao, Z., Kazakov, A., Li, J., Dryer, L. F., The initial temperature and N2 dilution effect on the laminar flame speed of propane/air, Combust. Sci. Technol., Vol. 176, No. 10, pp. 1705-1723, 2004.
[28] Sileghem, L., Alekseev, V. A., Vancoillie, J., Van Geem, K. M., Nilsson, E. J. K., Verhelst, S., Konnov, A. A., Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene, Fuel, Vol. 112, pp. 355-365, 2013.
[29] Dirrenberger, P., Glaude, P. A., Bounaceur, R., Le Gall, H., da Cruz, A. P., Konnov, A. A., Battin-Leclerc, F., Laminar burning velocity of gasolines with addition of ethanol, Fuel, Vol. 115, pp. 162-169, 2014.
[30] Mannaa, O., Mansour, M. S., Roberts, W. L., Chung, S. H., Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with (RON), Combust. Flame, Vol. 162, No. 6, pp. 2311-2321, 2015.
[31] Farrell, J. T., Johnston, R. J., Androulakis, I. P., Molecular structure effects on laminar burning velocities at elevated temperature and pressure, in {SAE} Technical Paper Series, 2004.
[32] Burluka, A. A., Gaughan, R. G., Griffiths, J. F., Mandilas, C., Sheppard, C. G. W., Woolley, R., Turbulent burning rates of gasoline components, Part 1 – Effect of fuel structure of C-6 hydrocarbons, Fuel, Vol. 167, pp. 347-356, 2016.
[33] Park, O., Veloo, P. S., Sheen, D. A., Tao, Y., Egolfopoulos, F. N., Wang, H., Chemical kinetic model uncertainty minimization through laminar flame speed measurements, Combust. Flame, Vol. 172, pp. 136-152, 2016.
[34] Bishop, C. M., Pattern recognition and machine learning, Springer, 2006.
[35] Weisberg, S., Applied linear regression, Hoboken, New Jersey, John Wiley & Sons, 2013.
[36] Fox, J., Weisberg, S., An R companion to applied regression. Multivariate linear models in R. An appendix to an R companion to applied regression, Sage Publications, 2011.
[37] Vapnik, V., The nature of statistical learning theory, New York, Springer, 1995.
[38] Bergstra, J., Bengio, Y., Random search for hyper-parameter optimization, J. Mach. Learn. Res., Vol. 13, No. 1, pp. 281-305, 2012.
[39] Geisser, S., Predictive inference, New York, NY, Chapman and Hall, 1993.
[40] Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Lissianski, V. V., Qin, Z., GRI-Mech 3.0, 2016.
[41] Mechanical and Aerospace Engineering (Combustion Research) – University of California at San Diego, Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism web page [Online], available: http://web.eng.ucsd.edu/mae/groups/combustion/ mechanism.html, 2009.
[42] Caltech – The force – Turbulent flow oriented research in combustion and energy, CaltechMech.
[43] POLIMI, The CRECK modelling group, detailed kinetic mechanisms and CFD of reacting flows.
[44] Combustion Chemistry Centre (NUI Galway), NUI Galway – Combustion Chemistry Centre – Reaction Mechanism Downloads [Online], available: http://c3.nuigalway.ie/mechanisms.html.
[45] LOGEresearch v1.10.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-184f7782-dd0b-4634-afb6-dde98700404a
Identyfikatory
DOI 10.5604/01.3001.0012.4337