Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a slip compensation method for traditional scalar (V/f) control of a five-phase induction motor. The proposed control method uses the possibility of injecting the third harmonic of voltage to increase the motor’s electromagnetic torque. The solution is characterized by both the simplicity of scalar control and improved speed control efficiency. The paper presents the PLECS simulation results and describes the laboratory tests that were conducted. Several scenarios were performed with dedicated and self developed algorithm in a laboratory stand using a five-phase induction motor.
Rocznik
Tom
Strony
art. no. e153223
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Gdansk University of Technology, Faculty of Electrical and Control Engineering, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
- Gdansk University of Technology, Faculty of Electrical and Control Engineering, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
- Novatem SAS, 20 avenue Didier DAURAT, 31400 Touluse, France
autor
- Djelfa University, Laboratory of Applied Automation and Industriual Diagnosis, 17000 Djelfa, Algeria
Bibliografia
- [1] R.H. Byrne, T.A. Nguyen, D.A. Copp, B.R. Chalamala, and I. Gyuk, “Energy management and optimization methods for grid energy storage systems,” IEEE Access, vol. 6, pp. 13 231–13 260, Aug. 2017, doi: 10.1109/ACCESS.2017.2741578.
- [2] M. Adamczyk and T. Orlowska-Kowalska, “Influence of the stator current reconstruction method on direct torque control of induction motor drive in current sensor postfault operation,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, p. e140099, 2022, doi: 10.24425/BPASTS.2022.140099.
- [3] S. Jain, A.K. Thopukara, R. Karampuri, and V.T. Somasekhar, “A single-stage photovoltaic system for a dual-inverter-fed open-end winding induction motor drive for pumping applications,” IEEE Trans. Power Electron., vol. 9, pp. 4809–4818, Sep. 2015, doi: 10.1109/TPEL.2014.2365516.
- [4] E. Robles, M. Fernandez, J. Andreu, E. Ibarra, J. Zaragoza, and U. Ugalde, “Common-mode voltage mitigation in multiphase electric motor drive systems,” Renew. Sustain. Energy Rev., vol. 157, p. 111971, Apr. 2022, doi: 10.1016/J.RSER.2021.111971.
- [5] G. Brando, A. Dannier, and I. Spina, “A full order sensorless control adaptive observer for doubly-fed induction generator,” in ICCEP 2019 – 7th International Conference on Clean Electrical Power: Renewable Energy Resources Impact. Institute of Electrical and Electronics Engineers Inc., Jul. 2019, pp. 464–469, doi: 10.1109/ICCEP.2019.8890195.
- [6] E. Fedele, D. Lauria, and R. Rizzo, “Dfig capability under weak grid connection and different reactive power control modes,” in 2023 International Conference on Clean Electrical Power, ICCEP 2023, 2023, pp. 896–902, doi: 10.1109/ICCEP57914.2023.10247462.
- [7] A. Glowacz et al., “Fault diagnosis of electrical faults of three-phase induction motors using acoustic analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, p. e148440, 2024, doi: 10.24425/BPASTS.2024.148440.
- [8] R. Kumar and B. Singh, “Bldc motor-driven solar pv array-fed water pumping system employing zeta converter,” IEEE Trans. Ind. Appl., vol. 52, pp. 2315–2322, May 2016, doi: 10.1109/TIA.2016.2522943.
- [9] R. Ryndzionek, K. Blecharz, F. Kutt, M. Michna, and G. Kostro, “Development and performance analysis of a novel multiphase doubly-fed induction generator,” Arch. Electr. Eng., vol. 71, pp. 1003–1015, 2022, doi: 10.24425/AEE.2022.142121.
- [10] A.S. Nanoty and A.R. Chudasama, “Design of multiphase induction motor for electric ship propulsion,” in 2011 IEEE Electric Ship Technologies Symposium (ESTS 2011), 2011, pp. 283–287, doi: 10.1109/ESTS.2011.5770882.
- [11] P. Maciejewski and G. Iwański, “Six-phase doubly fed induction machine-based standalone dc voltage generator,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, p. e135839, 2021, doi: 10.24425/BPASTS.2021.135839.
- [12] K. Kyslan, M. Lacko, Ž. Ferková, V. Petro, S. Padmanaban, and D. Perduková, “Current limitation method for v/f control of five-phase induction machines,” Int. Trans. Electr. Energy Syst., vol. 2022, p. 5165666, 2022, doi: 10.1155/2022/5165666.
- [13] M. Hinkkanen, L. Tiitinen, E. Molsa, and L. Harnefors, “On the stability of volts-per-hertz control for induction motors,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, pp. 1609–1618, Apr. 2022, doi: 10.1109/JESTPE.2021.3060583.
- [14] A.S. Abdel-Khalik, M.I. Masoud, and B.W. Williams, “Improved flux pattern with third harmonic injection for multiphase induction machines,” IEEE Trans. Power Electron., vol. 27, pp. 1563–1578, 2012, doi: 10.1109/TPEL.2011.2163320.
- [15] P. Strankowski, J. Guzinski, M. Morawiec, A. Lewicki, and F. Wilczynski, “Sensorless five-phase induction motor drive with third harmonic injection and inverter output filter,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, pp. 437–445, Jun. 2020, doi: 10.24425/BPASTS.2020.133369.
- [16] K. Łuksza, D. Kondratenko, and A. Lewicki, “Dead time effects compensation strategy by third harmonic injection for a five-phase inverter,” Arch. Electr.l Eng., vol. 73, pp. 17–35, 2024, doi: 10.24425/AEE.2024.148854.
- [17] M. Morawiec and P. Kroplewski, “Nonadaptive estimation of the rotor speed in an adaptive full order observer of induction machine,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, pp. 973–981, Oct. 2020, doi: 10.24425/BPASTS.2020.134654.
- [18] T. Białoń, A. Lewicki, M. Pasko, and R. Niestrój, “Parameter selection of an adaptive pi state observer for an induction motor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, pp. 599–603, Sep. 2013, doi: 10.2478/BPASTS-2013-0062.
- [19] M. Morawiec, P. Strankowski, A. Lewicki, and J. Guzinski, “Sensorless control of five-phase induction machine supplied by the vsi with output filter,” in Proc. 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2016, Aug. 2016, pp. 304–309, doi: 10.1109/CPE.2016.7544204.
- [20] P. Strankowski, J. Guziński, F. Wilczyński, M. Morawiec, and A. Lewicki, “Open-phase fault detection method for sensorless five-phase induction motor drives with an inverter output filter,” Power Electron. Drives, vol. 4, no. 1, pp. 191–202, 2019, doi: 10.2478/pead-2019-0004.
- [21] P. Zhu, M. Qiao, Y. Wei, and Y. Xia, “Research on five-phase induction motor system control with third harmonic current injection,” J. Eng., vol. 2017, pp. 2559–2563, Jan. 2017, doi: 10.1049/JOE.2017.0789.
- [22] A. Ray, S. Belkhode, R. Karampuri, and S. Jain, “Optimized pwm techniques with 3rd harmonic injection for five phase concentrated winding induction motor with open-end stator,” in Proc. 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2018, Jul. 2018, doi: 10.1109/PEDES.2018.8707549.
- [23] R.O.C. Lyra and T.A. Lipo, “Torque density improvement in a six-phase induction motor with third harmonic current injection,” IEEE Trans. Ind. Appl., vol. 38, pp. 1351–1360, 2002, doi: 10.1109/TIA.2002.802938.
- [24] M.R. Arahal, M.J. Duran, F. Barrero, and S.L. Toral, “Stability analysis of five-phase induction motor drives with variable third harmonic injection,” Electr. Power Syst. Res., vol. 80, pp. 1459–1468, Dec. 2010, doi: 10.1016/J.EPSR.2010.06.011.
- [25] W. Yu, X. Liu, and W. Kong, “Torque density improvement for five-phase induction motor drive with harmonic current injection in electric vehicles application,” in ICEMS 2018 – 2018 21st International Conference on Electrical Machines and Systems, Nov. 2018, pp. 2525–2528, doi: 10.23919/ICEMS.2018.8549474.
- [26] P. Zhao and G. Yang, “Torque density improvement of five-phase pmsm drive for electric vehicles applications,” J. Power Electron., vol. 11, pp. 401–407, 2011, doi: 10.6113/JPE.2011.11.4.401.
- [27] W. Kong, R. Qu, J. Huang, and M. Kang, “Air-gap and yoke flux density optimization for multiphase induction motor based on novel harmonic current injection method,” in Proc. 2016 22nd International Conference on Electrical Machines, ICEM 2016, Nov. 2016, pp. 100–106, doi: 10.1109/ICELMACH.2016.7732512.
- [28] H. Liu, D.Wang, X. Yi, X. Zheng, X. Yu, and B. Pan, “Loss reduction of five-phase induction motor with third harmonic injection throughout widest torque range under open-circuit faults,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 11, pp. 4643–4658, Oct. 2023, doi: 10.1109/JESTPE.2023.3300367.
- [29] A.G. Yepes, A. Shawier, W.E. Abdel-Azim, A.S. Abdel-Khalik, S. Ahmed, and J. Doval-Gandoy, “General online current-harmonic generation for increased torque capability with minimum stator copper loss in fault-tolerant multiphase induction motor drives,” IEEE Trans. Transp. Electrif., vol. 9, pp. 4650–4667, Sep. 2023, doi: 10.1109/TTE.2023.3244742.
- [30] C.C. Scharlau, L.F.A. Pereira, L.A. Pereira, and S. Haffner, “Performance of a five-phase induction machine with optimized air gap field under open loop v/f control,” IEEE Trans. Energy Convers., vol. 23, pp. 1046–1056, 2008, doi: 10.1109/TEC.2008.2001437.
- [31] H. Hussain, G. Yang, R. Deng, and J. Yang, “Harmonic injection strategy considering multiplane iron loss impact with optimal magnetizing flux distribution for multiphase induction machines,” IEEE Trans. Ind. Electron., vol. 70, pp. 6530–6539, Jul. 2023, doi: 10.1109/TIE.2022.3203683.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-184ac610-c5aa-4f8f-bf2b-8ddb1471bfd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.