PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

3D simulation of incompressible flow around a rotating turbulator: Effect of rotational and direction speed

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents new results for the dynamic behaviour of fluid around a rotating turbulator in a channel. The turbulator has a propeller form which is placed inside a flat channel. The research was carried out using 3D numerical simulation. The rationale of the experiment was as follows: we put a propeller-turbulator inside a flat channel, and then we insert a water flow inside the channel. The turbulator rotates at a constant and uniform speed. The main points studied here are the effect of the presence of turbulator and its rotational direction on the flow behaviour behind the turbulator. The results showed that the behaviour of flow behind the turbulator is mainly related to the direction of turbulator rotating. Also, the studied parameters affect coefficients of drag force and power number. For example, when the turbulator rotates in the positive direction, the drag coefficient decreases in terms of rotational speed of the turbulator, while the drag coefficient increases in terms of rotational speed when the turbulator rotates in the negative direction.
Słowa kluczowe
Rocznik
Strony
139--157
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
  • University of Science and Technology of Oran Mohamed-Boudiaf, Faculty of Mechanical Engineering, Laboratory of Sciences and Marine Engineering, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • University of Science and Technology of Oran Mohamed-Boudiaf, Faculty of Mechanical Engineering, Laboratory of Sciences and Marine Engineering, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • University of Science and Technology of Oran Mohamed-Boudiaf, Faculty of Mechanical Engineering, Laboratory of Sciences and Marine Engineering, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • Stellenbosch University, Faculty of Military Science, Private Bag X2, Saldanha 7395, South Africa
Bibliografia
  • [1] Ameur H.: Agitation of yield stress fluids in different vessel shapes. Eng. Sci. Technol.Int. J. 19(2016), 1, 189–196.
  • [2] Laidoudi H.: Hydrodynamic analyses of the flow patterns in stirred vessel of two bladed impeller. J. Serb. Soc. Comput. Mech. 14(2020), 2, 117–132.
  • [3] Mishra V.P., Kumar P., Joshi J.B.: Flow generated by a disc turbine in aqueous solutions of polyacrylamide. Chem. Eng. J. 71(1998), 1, 11–21.
  • [4] Acharya N.: Magnetized hybrid nanofluid flow within a cube fitted with circular cylinder and its different thermal boundary conditions. J. Magn. Magn. Mater. 564(2022),2, 170167.
  • [5] Laidoudi H., Bouzit M.: The effect of asymmetrically confined circular cylinder and opposing buoyancy on fluid flow and heat transfer. Defect Diffus. Forum 374(2017),18–28
  • [6] Dawar A., Acharya N.: Unsteady mixed convective radiative nanofluid flow in the stagnation point region of a revolving sphere considering the influence of nanoparticles diameter and nanolayer. J. Indian Chem. Soc. 99(2022), 10, 100716.
  • [7] Goldanlou A.S., Sepehrirad M., Papi M., Hussein A. K., Afrand M., Rostami S.: Heat transfer of hybrid nanofluid in a shell and tube heat exchanger equipped with blade-shape turbulators. J. Therm. Anal. Calorim. 143(2021), 1689–1700.
  • [8] Saleh B., Sundar L.S., Aly A. A., Ramana E. V., Sharma K. V., Afzal A., Abdelrhman Y., Sousa A.C.M.: The Combined effect of Al2O3 nanofluid and coiled wire inserts in a flat-plate solar collector on heat transfer, thermal efficiency and environmental CO2 Characteristics. Arab. J. Sci. Eng. 47(2022), 9187–9214.
  • [9] Rani P., Tripathy P.P.: Heat transfer augmentation of flat plate solar collector through finite element-based parametric study. J. Therm. Anal. Calorim. 147(2022), 639–660.
  • [10] Laidoudi H., Helmaoui M., Bouzit M., Ghenaim A.: Natural convection of Newtonian fluids between two concentric cylinders of a special cross-sectional form. Therm. Sci. 25(2021), 5, 3701–3714.
  • [11] Zaboli M., Ajarostaghi S.S.M., Saedodin S., Kiani B.: Hybrid nanofluid flow and heat transfer in a parabolic trough solar collector with inner helical axial fins as turbulator. Eur. Phys. J. Plus. 136(2021), 841.
  • [12] Oleiwi A., Mohsen A. M., Abdulkadhim A., Abed A.M., Laidoudi H., Abderrahmane A.: Experimental and numerical study on the heat transfer enhancement over scalene and curved-side triangular ribs. Heat Transf. 52(2023), 5, 3433–3452.
  • [13] Ramla M., Laidoudi H., Bouzit M.: Behaviour of a non-newtonian fluid in a helical tube under the influence of thermal buoyancy. Act. Mech. Auto. 16(2022), 2, 111–118.
  • [14] Acharya N.: Spectral quasi linearization simulation of radiative nanofluidic transport over a bended surface considering the effects of multiple convective conditions. Eur. J. Mech. B-Fluid. 84(2020), 139–154.
  • [15] Fang Y., Mansir I.B., Shawabkeh A., Mohamed A., Emami F.: Heat transfer, pressure drop, and economic analysis of a tube with a constant temperature equipped with semi-circular and teardrop-shaped turbulators. Case Stud. Therm. Eng. 33(2022),101955.
  • [16] Farshad S.A., Sheikholeslami M.: FVM modeling of nanofluid forced convection through a solar unit involving MCTT. Int. J. Mech. Sci. 159(2019), 126–139.
  • [17] Yan S.R., Golzar A., Sharifpur M., Meyer J. P., Liu D.H., Afrand M.: Effect of U-shaped absorber tube on thermal-hydraulic performance and efficiency of two-fluid parabolic solar collector containing two-phase hybrid non-Newtonian nanofluids. Int. J. Mech. Sci. 185(2020), 105832.
  • [18] Ebrahimpour Z., Sheikholeslami M.: Intensification of nanofluid thermal performance with install of turbulator in a LFR system. Chem. Eng. Process. Proc. Intensific. 161(2021), 108322.
  • [19] Sheikholeslami M., Abohamzeh E., Jafaryar M., Shafee A., Babazadeh H.: CuO nanomaterial two-phase simulation within a tube with enhanced turbulator. Powder Technol. 373(2020), 1–13.
  • [20] Farshad S.A., Sheikholeslami M.: Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew. Energ. 141(2019), 246–258.
  • [21] Sheikholeslami M., Ebrahimpour Z.: Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape. Inter. J. Therm. Sci. 176(2022), 107505.
  • [22] Khetib Y., Sait H., Habeebullah B., Hussain A.: Numerical study of the effect of curved turbulators on the exergy efficiency of solar collector containing two-phase hybrid nanofluid. Sustain. Energ. Technol. Assess. 47(2021), 101436
  • [23] Aghaei A., Enayati M., Beigi N., Ahmadi A., Pourmohamadian H., Sadeghi S., Dezfulizadeh A., Golzar A.: Comparison of the effect of using helical strips and fines on the efficiency and thermal–hydraulic performance of parabolic solar collectors. Sust. Energ. Technol. Assess. 52(2022), 102254.
  • [24] Yang L., Du K.: Thermo-economic analysis of a novel parabolic trough solar collector equipped with preheating system and canopy. Energy 211(2020), 118900.
  • [25] Farshad S.A., Sheikholeslami M.: Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow. Physica A 525(2019), 1–12.
  • [26] Shafee A., Arabkoohsar A., Sheikholeslami M., Jafaryar M., Ayani M., Nguyen-Thoi T., Basha D.B., Tlili I., Li Z.: Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss. Physica A 542(2020),122161.
  • [27] Nakhchi M.E., Hatami M., Rahmati M.: Effects of CuO nano powder on performance improvement and entropy production of double-pipe heat exchanger with innovative perforated Turbulators. Adv. Powder Technol. 32(2021), 8, 3063–3074.
  • [28] Bellos E., Tzivanidis C., Tsimpoukis D.: Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renew. Sust. Energ. Rev.91(2018), 358–375.
  • [29] Sheikholeslami M., Farshad S.A., Said Z.: Analyzing entropy and thermal behavior of nanomaterial through solar collector involving new tapes. Int. Comm. Heat Mass Transf. 123 (2021), 105190.
  • [30] Sheikholeslami M., Ali Farshad S., Shafee A., Babazadeh H.: Influence of Al2O3 nano powder on performance of solar collector considering turbulent flow. Adv. Powder Technol. 31(2020), 9, 3695–3705.
  • [31] Sheikholeslami M., Farshad S. A.: Nanoparticles transportation with turbulent regime through a solar collector with helical tapes. Adv. Powder Technol. 33(2022), 3,103510.
  • [32] Mustafa J., Alqaed S., Sharifpur M.: Numerical study on performance of double-fluid parabolic trough solar collector occupied with hybrid non-Newtonian nanofluids: Investigation of effects of helical absorber tube using deep learning. Eng. Anal. Bound. Elem. 140(2022), 562–580.
  • [33] Dovom A.R.M., Aghaei A., Joshaghani A.H., Dezfulizadeh A., Kakavandi A.A.: Numerical analysis of heating aerosol carbon nanofluid flow in a power plant recuperator with considering ash fouling: a deep learning approach. Eng. Anal. Bound. Elem. 141(2022), 75–90.
  • [34] Afshari F., Sozen A., Khanlari A., Tuncer A.D., Sirin C.: Effect of turbulator modifications on the thermal performance of cost-effective alternative solar air heater. Renew. Energ. 158(2020), 297–310.
  • [35] Abu-Hamdeh N.H., Bantan R.A.R., Khoshvaght-Aliabadi M., Alimoradi A.: Effects of ribs on thermal performance of curved absorber tube used in cylindrical solar collectors. Renew. Energ. 161(2020), 1260–1275.
  • [36] Mokeddem M., Laidoudi H., Makinde O.D., Bouzit M.: 3D simulation of incompressible Poiseuille flow through 180◦ curved duct of square cross-section under effect of thermal buoyancy. Period. Polytech. Mech. Eng. 63(2019), 4, 257–269.
  • [37] Ameur H., Bouzit M.: Power consumption for stirring shear thinning fluids by twoblade impeller. Energy 50(2013), 326–332.
  • [38] Hassouni S., Laidoudi H., Makinde O. D., Bouzit M., Haddou B.: A qualitative study of mixing a fluid inside a mechanical mixer with the effect of thermal buoyancy. Arch. Thermodyn. 44(2023), 1, 105–119.
  • [39] Seddik-Bouchouicha M., Laidoudi H., Hassouni S., Makinde O.D.: Study of the effect of geometric shape on the quality of mixing: examining the effect of length of the baffles. Arch. Thermodyn. 44(2023), 2, 69–85.
  • [40] Bulat P.V., Volkov K.N.: Fluid/solid coupled heat transfer analysis of a free rotating disc. Arch. Thermodyn. 39(2018), 3, 169–192.
  • [41] Szymanski P., Mikielewicz D.: Challenges in operating and testing loop heat pipes in 500-700 K temperature ranges. Arch. Thermodyn. 43(2022), 2, 61–73.
  • [42] Cyklis P.: Heat transfer in falling film evaporators during the industrial process of apple juice concentrate production. Arch. Thermodyn. 39(2018), 3, 3–13.
  • [43] Aliouane I., Kaid N., Ameur H., Laidoudi H.: Investigation of the flow and thermal fields in square enclosures: Rayleigh-Bénard’s instabilities of nanofluids. Therm. Sci.Eng. Prog. 25(2021), 100959
  • [44] Gambit. http://www.gambit-project.org/ (acessed 11 Aug. 2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18483125-3840-4cf0-a542-f8c677a5eede
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.