PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Voltage regulation strategy for alternating current microgrid under false data injection attacks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study introduces a robust strategy for regulating output voltage in the presence of false data injection (FDI) attacks. Employing a hierarchical approach, we disentangle the distributed secondary control problem into two distinct facets: an observer-based resilient tracking control problem and a decentralized control problem tailored for real systems. Notably, our strategy eliminates the reliance on global information and effectively mitigates the impact of FDI attacks on directed communication networks. Ultimately, simulation results corroborate the efficacy of our approach, demonstrating successful voltage regulation within the system and proficient management of FDI attacks.
Rocznik
Strony
251--264
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., wz.
Twórcy
  • Jilin Engineering Normal University, Changchun, 130000, China
autor
  • Jilin Engineering Normal University, Changchun, 130000, China
autor
  • Northeast Electric Power University, Jilin, 132000, China
autor
  • Northeast Electric Power University, Jilin, 132000, China
autor
  • Northeast Electric Power University, Jilin, 132000, China
autor
  • Northeast Electric Power University, Jilin, 132000, China
Bibliografia
  • [1] Zhang Z., Zhang B., Wang D. et al., Battery/super-capacitor HESS applied in DC microgrid, Archives of Electrical Engineering,vol. 69, no. 2, pp. 379–388 (2020), DOI: 10.24425/aee.2020.133032.
  • [2] Gu W., Lou G., Tan W., Yuan X., A nonlinear state estimator-based decentralized secondary voltage control scheme for autonomous microgrids, IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4794–4804 (2017), DOI: 10.1109/TPWRS.2017.2676181.
  • [3] Qian T., Liu Y., Zhang W., Tang W., Shahidehpour M., Event-triggered updating method in centralized and distributed secondary controls for islanded microgrid restoration, IEEE Transactions Smart Grid, vol. 11, no. 2, pp. 1387–1395 (2020), DOI: 10.1109/TSG.2019.2937366
  • [4] Li X., Sun Z., Tang Y., Karimi H.R., Adaptive event-triggered consensus of multiagent systems on directed graphs, IEEE Transactions Automatic Control, vol. 66, no. 4, pp. 1670–1685 (2021), DOI: TAC.2020.3000819.
  • [5] Li Z., Ren W., Liu X., Fu M., Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols, IEEE Transactions Automatic Control, vol. 58, no. 7, pp. 1786–1791 (2013), DOI: 10.1109/TAC.2012.2235715.
  • [6] Liu S., Sun J., Zhang H., Zhai M., Fully distributed event-driven adaptive consensus of unknown linear systems, IEEE Transactions Neural Network Learning Systems (2022), DOI: 10.1109/TNNLS.2022.3148824.
  • [7] Im W.S., Wang C., Liu W., Liu L., Kim J.M., Distributed virtual inertia based control of multiple photovoltaic systems in autonomous microgrid, IEEE/CAA Journal Automatica Sinica, vol. 4, no. 3, pp. 512–519 (2017), DOI: 10.1109/JAS.2016.7510031.
  • [8] Hu J., Sun Q., Wang R., Wang B., Zhai M., Zhang H., Privacy-preserving sliding mode control for voltage restoration of AC microgrids based on output mask approach, IEEE Transactions on Industrial Informatics, vol. 18, no. 10, pp. 6818–6827 (2022), DOI: 10.1109/TII.2022.3141428.
  • [9] Bidram A., Davoudi A., Lewis F.L., Guerrero J.M., Distributed cooperative secondary control of microgrids using feedback linearization, IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3462–3470 (2013), DOI: 10.1109/TPWRS.2013.2247071.
  • [10] Zhou J., Kim S., Zhang H., Sun Q., Han R., Consensus-based distributed control for accurate reactive, harmonic, and imbalance power sharing in microgrids, IEEE Transactions Smart Grid, vol. 9, no. 4, pp. 2453–2467 (2018), DOI: 10.1109/TSG.2016.2613143.
  • [11] Dehkordi N.M., Sadati N., Hamzeh M., Distributed robust finite-time secondary voltage and frequency control of islanded microgrids, IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3648–3659 (2017), DOI: 10.1109/TPWRS.2016.2634085.
  • [12] Ning B., Han Q.L., Ding L., Distributed secondary control of ac microgrids with external disturbances and directed communication topologies: A full-order sliding-mode approach, IEEE/CAA Journal Automatica Sinica, vol. 8, no. 3, pp. 554–564 (2021), DOI: 10.1109/JAS.2020.1003315.
  • [13] Zhai M., Sun Q., Wang R., Wang B., Liu S., Zhang H., Fully distributed fault-tolerant event-triggered control of microgrids under directed graphs, IEEE Network Science and Engineering, vol. 9, no. 5, pp. 3570–3579 (2022), DOI: 10.1109/TNSE.2022.3176464.
  • [14] Zhai M., Sun Q., Wang B., Liu Z., Zhang H., Cooperative fault-estimation-based event-triggered fault-tolerant voltage restoration in islanded AC microgrids, IEEE Transactions on Automation Science and Engineering (2022), DOI: 10.1109/TASE.2022.3186884.
  • [15] Deng C., Che W.W., Fault-tolerant fuzzy formation control for a class of nonlinear multiagent systems under directed and switching topology, IEEE Transactions on Systems, Man and Cybernetics: Systems, vol. 51, no. 9, pp. 5456–5465 (2021), DOI: 10.1109/TSMC.2019.2954870.
  • [16] Afshari A., Karrari M., Baghaee H.R., Gharehpetian G.B., Karrari S., Cooperative Fault-Tolerant Control of Microgrids Under Switching Communication Topology, IEEE Transactions Smart Grid, vol. 11, no. 3, pp. 1866–1879 (2020), DOI: 10.1109/TSG.2019.2944768.
  • [17] Afshari A., Karrari M., Baghaee H.R., Gharehpetian G.B., Fault-tolerant voltage/frequency synchronization in autonomous AC microgrids, IEEE Transations on Power Systems, vol. 35, no. 5, pp. 3774–3789 (2020), DOI: 10.1109/TPWRS.2020.2975115.
  • [18] Zhai M., Sun Q., Wang R., Wang B., Hu J., Zhang H., Distributed multiagent-based event-driven fault-tolerant control of islanded microgrids, IEEE Transactions on Cybernetics (2023), DOI: 10.1109/TCYB.2023.3266923.
  • [19] Li X., Wen C., Chen C., Xu Q., Adaptive resilient secondary control for microgrids with communication faults, IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 8493–8503 (2022).
  • [20] Abhinav S., Schizas I.D., Ferrese F., Davoudi A., Optimization-based AC microgrid synchronization, IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2339–2349 (2017), DOI: 10.1109/TII.2017.2702623.
  • [21] Wang Y., Nguyen T.L., Syed M.H., Xu Y., Guillo-Sansano E., Nguyen V.H., Burt G.M., Tran Q.T., Caire R., A distributed control scheme of microgrids in energy internet paradigm and its multisite implementation, IEEE Transactions on Industrial Informatics, vol. 17, no. 2, pp. 1141–1153 (2021), DOI: 10.1109/TII.2020.2976830.
  • [22] Dehkordi N.M., Baghaee H.R., Sadati N., Guerrero J.M., Distributed noise-resilient secondary voltage and frequency control for islanded microgrids, IEEE Transactions Smart Grid, vol. 10, no. 4, pp. 3780–3790 (2019), DOI: 10.1109/TSG.2018.2834951.
  • [23] Ning B., Han Q.-L., Ding L., Distributed finite-time secondary frequency and voltage control for islanded microgrids with communication delays and switching topologies, IEEE Transactions on Cybernetics, vol. 51, no. 8, pp. 3988–3999 (2021), DOI: 10.1109/TCYB.2020.3003690.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18461dbc-55f7-4997-8ca0-c5ec0667c34c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.