Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper conducts low temperature welding tests on Q460GJC thick plate (60 mm), and based on the basic theory of phase transformation structure evolution, a three-dimensional microstructure evolution analysis method for large welded joints is established, and the analysis of the evolution process of multi-layer and multi-pass weld structure under the low temperature environment of thick plates is completed. The comparison and analysis of test and numerical simulation results are in good agreement, which proves that the welding phase transformation model realizes the digitalization of metallurgical phase transformation in steel structure welding, and optimizes welding process parameters. It is of great significance to improve the quality of welding products and lay a foundation for predicting the performance of welded joints from the micro level.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1533--1543
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wzory
Twórcy
autor
- Beijing Construction Engineering Group Co., LTD, Beijing, 100032, P.R. China
autor
- Beijing Construction Engineering Group Co., LTD, Beijing, 100032, P.R. China
autor
- Beijing Third Construction Engineering Co., LTD, Beijing, 100032, P.R. China
autor
- Central Research Institute of Building and Construction Co., Ltd. MCC, Beijing, 100032, P.R. China
autor
- China State Shipbuilding International Engineering Co., Ltd. CSIE, Beijing, 100000, P.R. China
autor
- Central Research Institute of Building and Construction Co., Ltd. MCC, Beijing, 100032, P.R. China
autor
- Central Research Institute of Building and Construction Co., Ltd. MCC, Beijing, 100032, P.R. China
Bibliografia
- [1] M. Yoshiki, T. Kanazawa, On the Mechanism of Propagation of Brittle Fracture in Mild Steel. J. Zosen Kiokai 1957 (102), 39-45 (2009). DOI: https://doi.org/10.2534/jjasnaoe1952.1957.102_39
- [2] GB 50661-2011, Welding Code for Steel Structure (2021)
- [3] A.K. Lakshminarayanan, V. Balasubramanian, Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique. T. Nonferr. Metal. Soc. 18 (3), 548-554 (2008). DOI: https://doi.org/10.1016/S1003-6326(08)60096-5
- [4] J.A. Goldak, M. Akhlaghi, Computational welding mechanics. USA: Springer Verlag New York Inc 2005, 59-63 (2005). DOI: https://doi.org/10.1007/b101137
- [5] J. Goldak, A. Chakravarti, M Bibby, A new finite element model for welding heat sources. Metall. Trans. B 15 (2), 299-305 (1984). DOI: https://doi.org/10.1007/BF02667333
- [6] M. Arunkumar, V. Dhinakaran, N.S. Shanmugam, Numerical prediction of temperature distribution and residual stresses on plasma arc welded thin titanium sheets. Int. J. Model. Simul. 41 (2), 146-162 (2019). DOI: https://doi.org/10.1080/02286203.2019.1700089
- [7] D. Camilleri, P. Mollicone, T.G.F. Gray, Computational methods and experimental validation of welding distortion models. P. I. Mech. Eng. L-J. Mat. 221 (4), 235-249 (2007). DOI: https://doi.org/10.1243/14644207JMDA1
- [8] M.A. Ezzat, A.S.E. Karamany, M.A. Fayik, Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Arch. Appl. Mech. 82, 557-572 (2012). DOI: https://doi.org/10.1007/s00419-011-0572-6
- [9] C.G. De Andres, F.G. Caballero, C. Capdevila, et al., Application of dilatometric analysis to the study of solid-solid phase transformations in steels. Mater. Charact. 48 (1), 101-111 (2002). DOI:https://doi.org/10.1016/S1044-5803(02)00259-0
- [10] Y. Ueda, J. Ronda, H. Murakawa, et al., Thermo-Mechanical-Metallurgical Model of Welded Steel: Part I: Evolution Equations for Internal Material Structures. Trans. JWRI23 (2), 149-167 (1994). DOI: https://doi.org/10.18910/6090
- [11] S. Ren, S. Li, Y. Wang, et al., Finite element analysis of residua stress in 2.25Cr-1Mo steel pipe during welding and heat treatment process. J. Manuf. Processes 47, 110-118 (2019). DOI: https://doi.org/10.1016/j.jmapro.2019.09.019
- [12] J.D. Robson, P. Upadhyay, A.P. Reynolds, Modelling microstructural evolution during multiple pass friction stir welding. Sci. Technol. Weld. Joi. 613-618 (2013). DOI: https://doi.org/10.1179/136217110X12813393169651
- [13] H. Göhring, O. Fabrichnaya, A. Leineweber, et al., Thermodynamics of the Fe-N and Fe-N-C Systems: The Fe-N and Fe-N-C Phase Diagrams Revisited. Metall. Mater. Trans. A 47, 6173-6186 (2016). DOI: https://doi.org/10.1007/s11661-016-3731-0
- [14] J.J. Cui, C.X. Lei, Z.W. Xing, et al., Predictions of the Mechanical Properties and Microstructure Evolution of High Strength Steel in Hot Stamping. J. Mater. Eng. Perform. 21, 2244-2254 (2012). DOI: https://doi.org/10.1007/s11665-012-0180-9
- [15] W. Ji, P. Zhang, K. Luo, Investigation of welding temperature field and residual stresses of corrugated steel web girders. Structures 44, 1416-1428 (2022). DOI: https://doi.org/10.1016/j.istruc.2022.08.047
- [16] L. Weingrill, M.B. Nasiri, N. Enzinger, Thermo-metallurgically coupled numerical simulation and validation of multi-layer gas metal arc welding of high strength pearlitic rails. Weld. World 63, 63-73 (2019). DOI: https://doi.org/10.1007/s40194-018-0639-x
- [17] S. Salimi, P. Bahemmat, M. Haghpanahi, A 3D transient analytical solution to the temperature field during dissimilar welding processes. Int. J. Mech. Sci. 79, 66-74 (2014). DOI: https://doi.org/10.1016/j.ijmecsci.2013.11.015
- [18] R. Hamilton, D. Mackenzie, H. Li, Multi-physics simulation of friction stir welding process. Eng. Computation. 27 (8), 967-985 (2020). DOI: https://doi.org/10.1108/02644401011082980
- [19] A. Yazdipour, A. Heidarzadeh, Effect of friction stir welding on microstructure and mechanical properties of dissimilar Al5083-H321 and 316L stainless steel alloy joints. J. Alloy. Compd. 680, 595-603 (2016). DOI: https://doi.org/10.1016/j.jallcom.2016.03.307
- [20] S. Jindal, R. Chhibber, N.P. Mehta, Effect of welding parameters on bead profile, microhardness and H2 content in submerged arc welding of high-strength low-alloy steel. P. I. Mech. Eng. B-J. Eng. 228 (1), 82-94 (2014). DOI: https://doi.org/10.1177/0954405413495846
- [21] Q. Sun, H.S. Di, J.C. Li, et al., A comparative study of the microstructure and properties of 800 MPa microalloyed C-Mn steel welded joints by laser and gas metal arc welding. Mater. Sci. Eng. A 669, 150-158 (2016). DOI: https://doi.org/10.1016/j.msea.2016.05.079
- [22] S.T. Mandziej, A. Vyrostkova. Creep and fracture behavior of long-annealed weld HAZ in CB2 steel. Weld. World, 64 (3), 573-590 (2020). DOI: https://doi.org/10.1007/s40194-020-00855-w
- [23] J. Han, H.J. Li, Z.X. Zhu, et al., Microstructure and mechanical properties of friction stir welded 18Cr-2Mo ferritic stainless steel thick plate. Mater. Design 63, 238-246 (2014). DOI: https://doi.org/10.1016/j.matdes.2014.05.070
- [24] P.Y. Zhang, J. Zhang, B.Z. Li, Mechanical Properties and Microstructure Transformation Behavior for Welded Joints in Ship Plate Steel with High-Heat Input Welding. J. Mater. Eng. Perform. 31, 944-952 (2021). DOI: https://doi.org/10.1007/s11665-021-06224-y
Uwagi
1. National Key Research and Development Project (2022YFB3706403); Minmetals Science and Technology Special Project (2021ZXA06); Major Research and Development Project of China Metallurgical Group Corporation (YZJ2021181).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1845d1ed-2a78-4f53-bf8a-fbe304173ecd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.