PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nearest level control for improving total harmonic distortion in a 13-level three-phase multilevel inverter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research investigates the application of nearest level control (NLC) in a three-phase transistor-clamped H-bridge (TCHB) multilevel inverter (MLI) to enhance power quality and reduce harmonic distortion. The TCHB topology offers high performance with fewer components compared to traditional MLI configurations, making it particularly suitable for renewable energy applications. By operating at fundamental switching frequency, the NLC technique effectively minimizes switching losses while reducing total harmonic distortion (THD). The study includes MATLAB/Simulink-based simulation modeling and experimental validation using dSPACE, tested under varying load conditions. For a 13-level TCHB inverter with equal DC supplies and a modulation index of 𝑀 = 1, the voltage THD was 5.22% (resistive load) and 5.17% (inductive-resistive load) in simulations, which was further reduced to 4.5% and 4.2% in experiments. The NLC technique demonstrated superior harmonic performance and efficiency compared to conventional methods, particularly at higher voltage levels. This study highlights the practical advantages of the TCHB inverter, including reduced component count, simplified control implementation, and enhanced output waveform quality. These findings confirm the potential of the NLC-based TCHB inverter for high-performance motor drives and grid-tied renewable energy systems, positioning it as a promising solution for modern power electronics applications.
Rocznik
Strony
653--671
Opis fizyczny
Bibliogr. 42 poz., fot., rys., wykr., wz.
Twórcy
  • Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka, Melaka, 76100, Malaysia
  • Power Electronics and Drive Research Group, Universiti Teknikal Malaysia Melaka, Melaka, 76100 Malaysia
  • Faculty of Electrical Engineering & Technology, Universiti Malaysia Perlis, Perlis, 02100, Malaysia
  • Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka, Melaka, 76100, Malaysia
  • Power Electronics and Drive Research Group, Universiti Teknikal Malaysia Melaka, Melaka, 76100 Malaysia
  • Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka, Melaka, 76100, Malaysia
  • Power Electronics and Drive Research Group, Universiti Teknikal Malaysia Melaka, Melaka, 76100 Malaysia
autor
  • Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka, Melaka, 76100, Malaysia
  • Power Electronics and Drive Research Group, Universiti Teknikal Malaysia Melaka, Melaka, 76100 Malaysia
Bibliografia
  • [1] Hasan M., Abu-Siada A., Dahidah M. S. A., A three-phase symmetrical DC-Link multilevel inverter with reduced number of DC Sources, IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8331–8340 (2018), DOI: 10.1109/TPEL.2017.2780849.
  • [2] Amani M., Azari M. N., Rezanejad M., Single source self-balanced switched-capacitor multilevel inverter with reduced number of semiconductors, IET Power Electronics, vol. 16, no. 4, pp. 575–583 (2023), DOI: 10.1049/PEL2.12409.
  • [3] Chen M., Yang Y., Liu X., Loh P. C., Blaabjerg F., Single-source cascaded multilevel inverter with voltage-boost submodule and continuous input current for photovoltaic applications, IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 955–970 (2022), DOI: 10.1109/TPEL.2021.3098015.
  • [4] Vijeh M., Rezanejad M., Samadaei E., Bertilsson K., A General Review of Multilevel Inverters Based on Main Submodules: Structural Point of View, IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9479–9502 (2019), DOI: 10.1109/TPEL.2018.2890649.
  • [5] Hossain M. S., Mohd Said N. A., Halim W. A., Hossain M. H., Comparing performance and complexity of TCHB and CHB multilevel inverters using NLC technique, International Journal of Power Electronics and Drive Systems, vol. 15, no. 1, pp. 292–302 (2024), DOI: 10.11591/ijpeds.v15.i1.pp292-302.
  • [6] Rodriguez J., Lai J.-S., Peng F. Z., Multilevel inverters: a survey of topologies, controls, and applications, IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724–738 (2002), DOI: 10.1109/TIE.2002.801052.
  • [7] Hossain M. S., Hasan M. A., Mohd Said N. A., Halim W. A., Jidin A., Reduced Device Count Multilevel Inverter Topology for Renewable Energy Applications: A Brief Review, in 2023 IEEE Conference on Energy Conversion (CENCON) pp. 41–46 (2023), DOI: 10.1109/CENCON58932.2023.10369138.
  • [8] Kouro S. et al., Recent Advances and Industrial Applications of Multilevel Converters, IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553–2580 (2010), DOI: 10.1109/TIE.2010.2049719.
  • [9] Choudhury S., Bajaj M., Dash T., Kamel S., Jurado F., Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects, Energies, vol. 14, no. 18, 5773 (2021), DOI: 10.3390/EN14185773.
  • [10] Mahato B., Ranjan M., Pal P. K., Gupta S. K., Mahto K. K., Design, development and verification of a new multilevel inverter for reduced power switches, Archives of Electrical Engineering, vol. 71, no. 4, pp. 1051–1063 (2022), DOI: 10.24425/aee.2022.142124.
  • [11] Anisetty S. K., Sri Gowri K., Rao S. N., Kiran P. S., Kumar K. N., Integer factor based SVPWM approach for multilevel inverters with continuous and discontinuous switching sequences, Archives of Electrical Engineering, vol. 70, no. 4, pp. 859–872 (2021), DOI: 10.24425/aee.2021.138266.
  • [12] Mechouma R., Azoui B., Chaabane M., Three-phase grid connected inverter for photovoltaic systems, a review, in 2012 First International Conference on Renewable Energies and Vehicular Technology, pp. 37–42 (2012), DOI: 10.1109/REVET.2012.6195245.
  • [13] Swamy D. M., Venkatesan M., Three Phase Multi-Level Inverter Topologies and Modulation Techniques: A Short review, in 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), vol. 1, pp. 305–311 (2019), DOI: 10.1109/ICICICT46008.2019.8993140.
  • [14] Rodriguez J., Bernet S., Wu B., Pontt J.O., Kouro S., Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives, IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 2930–2945 (2007), DOI: 10.1109/TIE.2007.907044.
  • [15] Maheswari K.T., Bharanikumar R., Arjun V., Amrish R., Bhuvanesh M., A comprehensive review on cascaded H-bridge multilevel inverter for medium voltage high power applications, Materials Today: Proceedings, vol. 45, pp. 2666–2670 (2021), DOI: 10.1016/j.matpr.2020.11.519.
  • [16] Bidin J., Iskandar M., Yusof I., Ab Rahman M.Z., Azri M., Performance Evaluation of Single Phase Transformerless Inverter for Grid-connected Photovoltaic Application, International Journal of Electrical Engineering and Applied Sciences, vol. 4, no. 2, pp. 9–18 (2021), accessed: 2023 [online], available: https://ijeeas.utem.edu.my/ijeeas/article/view/6065.
  • [17] Chen H., Zhao H., Review on pulse-width modulation strategies for common-mode voltage reduction in three-phase voltage-source inverters, IET Power Electronics, vol. 9, no. 14, pp. 2611–2620 (2016), DOI: 10.1049/iet-pel.2015.1019.
  • [18] Ali M., Al-Ismail F.S., Gulzar M. M., Khalid M., A review on harmonic elimination and mitigation techniques in power converter based systems, Electric Power Systems Research, vol. 234, 110573 (2024), DOI: 10.1016/j.epsr.2024.110573.
  • [19] El Maataoui W., El Daoudi S., Abounada A., Mabrouki M., A comparative study of virtual synchronous generator and sinusoidal pulse width modulation in a wind high power conversion chain, Archives of Electrical Engineering, vol. 73, no. 4, pp. 961–976 (2024), DOI: 10.24425/aee.2024.152105.
  • [20] Zolfagharian O., Dastfan A., Marzebali M. H., Selective Harmonic Elimination Technique Improvement for Cascaded H-Bridge Multilevel Converters Under DC Sources Uncertainty, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 2, pp. 1282–1293 (2024), DOI: 10.1109/JESTPE.2023.3271653.
  • [21] Rao S. N., Kumar D. V. A., Babu C. S., New multilevel inverter topology with reduced number of switches using advanced modulation strategies, in 2013 International Conference on Power, Energy and Control (ICPEC), pp. 693–699 (2013), DOI: 10.1109/ICPEC.2013.6527745.
  • [22] Sinha A., Jana K. C., Das M. K., An inclusive review on different multi-level inverter topologies, their modulation and control strategies for a grid connected photo-voltaic system, Solar Energy, vol. 170, pp. 633–657 (2018), DOI: 10.1016/j.solener.2018.06.001.
  • [23] Blaabjerg F., Chen Z., Kjaer S. B., Power electronics as efficient interface in dispersed power generation systems, IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1184–1194 (2004), DOI: 10.1109/TPEL.2004.833453.
  • [24] Buccella C., Cecati C., Cimoroni M. G., Razi K., Harmonic mitigation technique for multilevel inverters in power systems, in 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 73–77 (2014), DOI: 10.1109/SPEEDAM.2014.6872070.
  • [25] Jayal P., Bajpai G., A novel space vector modulation-based transistor-clamped H bridge inverter-fed permanent magnet synchronous motor drive for electric vehicle applications, IET Power Electronics, vol. 31, no. 3 (2021), DOI: 10.1002/2050-7038.12789.
  • [26] Khergade A. V., Satputaley R. J., Borghate V. B., Raghava B. V. S., Harmonics Reduction of Adjustable Speed Drive Using Transistor Clamped H-Bridge Inverter Based DVR With Enhanced Capacitor Voltage Balancing, IEEE Transactions on Industrial Applications, vol. 56, no. 6, pp. 6744–6755 (2020), DOI: 10.1109/TIA.2020.3013823.
  • [27] Belkacem R. E. M., Benzid R., Bouguechal N., Multilevel inverter with optimal THD through the firefly algorithm, Archives of Electrical Engineering, vol. 66, no. 1, pp. 73–81 (2017), DOI: 10.1515/aee2017-0010.
  • [28] Singh P., Tiwari S., Gupta K. K., A new topology of transistor clamped 5-level H-Bridge multilevel inverter with voltage boosting capacity, in PEDES 2012 - IEEE International Conference on Power Electronics, Drives and Energy Systems, pp. 1–5 (2012), DOI: 10.1109/PEDES.2012.6484381.
  • [29] Goswami S. K., Harmonics elimination in a multilevel inverter using the particle swarm optimisation technique, IET Power Electronics, vol. 2, no. 6, pp. 646–652 (2009) [online], available: https:// digitallibrary.theiet.org/content/journals/10.1049/iet-pel.2008.0180.
  • [30] Bin Arif M. S. et al., An improved asymmetrical multi-level inverter topology with boosted output voltage and reduced components count, IET Power Electronics, vol. 14, no. 12, pp. 2052–2066 (2021), DOI: 10.1049/pel2.12119.
  • [31] Hossain M. S., Hossain M. I., Mohd Said N. A., Halim W. A., Azam S. N. M., Hossain M. H., Nearest Level Control Technique for Three-phase Transistor Clamped H-bridge Multilevel Inverter, in 2022 IEEE International Conference on Power and Energy, pp. 71–76 (2022), DOI: 10.1109/PECON54459.2022.9988919.
  • [32] Perez M., Rodriguez J., Pontt J., Kouro S., Power Distribution in Hybrid Multi-cell Converter with Nearest Level Modulation, in 2007 IEEE International Symposium on Industrial Electronics, pp. 736–741 (2007), DOI: 10.1109/ISIE.2007.4374688.
  • [33] José R., Agelidis V., Multilevel converters: An enabling technology for high-power applications, Proceedings of the IEEE, vol. 97, no. 11, pp. 1786–1817 (2009), DOI: 10.1109/JPROC.2009.2030235.
  • [34] Halim W. A., Rahim N. A., Azri M., Selective harmonic elimination for a single-phase 13-level TCHB based cascaded multilevel inverter using FPGA, Journal of Power Electronics, vol. 14, no. 3, pp. 488–498 (2014), DOI: 10.6113/JPE.2014.14.3.488.
  • [35] Deng Y., Harley R. G., Space-Vector Versus Nearest-Level Pulse Width Modulation for Multilevel Converters, IEEE Trans. Power Electron., vol. 30, no. 6, pp. 2962–2974 (2015), DOI: 10.1109/TPEL.2014.2331687.
  • [36] Sarwar M., Sarwar A., Farooqui S., Moht. T.-I., Mohhamad Fahad, Abdul R. Beig, A Hybrid Nearest Level Combined with PWM Control Strategy: Analysis and Implementation on Cascaded H-Bridge Multilevel Inverter and its Fault Tolerant Topology, ieeexplore.ieee.org., accessed: 2023 [online], available: https://ieeexplore.ieee.org/abstract/document/9350652/.
  • [37] Halim W.A., Rahim N.A., Azri M., Selective harmonic elimination for a single-phase 13-level TCHB based cascaded multilevel inverter using FPGA, J. Power Electron., vol. 14, no. 3, pp. 488–498 (2014), DOI: 10.6113/JPE.2014.14.3.488.
  • [38] Sai Lalitha A., Reddy R., Performance evaluation of transistor clamped h-bridge (TCHB) based five-level multilevel inverter topologies, Lect. Notes Electr. Eng., vol. 5, no. 3, pp. 102–125 (2018) [online], available: https://ijrar.org/papers/IJRAR1903262.pdf.
  • [39] Rameshkumar K., Indragandhi V., Mani G., Sanjeevikumar P., Model predictive current control of single-phase 13-level transistor-clamped H-bridge based cascaded multilevel inverter, Lect. Notes Electr. Eng., vol. 436, pp. 597–608 (2017), DOI: 10.1007/978-981-10-4394-9_58.
  • [40] Rasheed M., Alakkad M. M. A., Omar R., Sulaiman M., Halim W. A., Enhance the accuracy of control algorithm for multilevel inverter based on artificial neural network, Indones. J. Electr. Eng. Comput. Sci., vol. 20, no. 3, pp. 1148–1158 (2020), DOI: 10.11591/ijeecs.v20.i3.pp1148-1158.
  • [41] Meshram P. M., Borghate V. B., A simplified nearest level control (NLC) voltage balancing method for modular multilevel converter (MMC), IEEE Trans. Power Electron., vol. 30, no. 1, pp. 450–462 (2015), DOI: 10.1109/TPEL.2014.2317705.
  • [42] Hossain M. S., Said N. A. M., Hasan M.A., Halim W. A., Munim W. N. W. A., Jidin A., Performance evaluation of a nearest level control-based TCHB multilevel inverter for PMSM motors in electric vehicle systems, Results Eng., vol. 25, 103949 (2025), DOI: 10.1016/j.rineng.2025.103949.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-184576d0-decc-46d0-bef0-e98dbd3dee0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.