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Effect of the mathematical model and integration step

on the accuracy of the results of computation

of artillery projectile flight parameters
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Abstract. In the paper the three different mathematical models of motion of a spin-stabilized, conventional artillery projectile, possessing at
least trigonal symmetry, have been introduced. The vector six-degrees-of-freedom (6-DOF) differential equations of motion are an updated
edition of those published by Lieske and McCoy and are consistent with STANAG 4355 (Ed. 3). The mathematical models have been used
to developing software for simulating the flight of the Denel 155mm Assegai M2000 series artillery projectile and to conduct comprehensive
research of the influence of the applied model and integration step on the accuracy and time of computation of projectile trajectory.
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1. Introduction

The model representing the projectile as a rigid body with
six degrees of freedom is the main mathematical model (in
short 6-DOF model) that enables testing dynamic properties
of motion of ground artillery projectiles [1]. Typically, model-
ing assumes that the projectile is exposed to full aerodynamic
force, including the Magnus force and moment, gravity force,
Coriolis force caused by the Earth’s rotation and, possibly,
rocket engine thrust (for projectiles with propulsion). Much
of the form of the mathematical model depends on: the co-
ordinate system used to derive of dynamic projectile motion
equations, angles that are used for describing aerodynamic
forces and moments and the method of constructing kinemat-
ic equations of motion.

Literature, mainly that concerned with aviation technolo-
gies, uses mostly Euler angles or quasi-Euler angles (often
called as aviation angles in the context of flight dynamics
[2, 3]) but also, increasingly more frequently, Euler [4, 5],
Rodriguez-Hamilton [6] or Cayley-Klein [4–6] parameters for
constructing kinematic equations of motion (or kinematic re-
lations). Selecting a mathematical form of kinematic equa-
tions of motion is motivated by the wish to avoid numerical
singularities (division by zero) for some object positions in
space. Using kinematic direction cosines for projectile axes
of symmetry [7] can be an alternative to using Euler angles
and parameters.

Principles of classical mechanics are used in developing
the 6DOF model. They are often used when constructing the
equations of motion of flying objects [2, 8] which are the
alternative to methods based on the principles of analytical
mechanics. Among these methods we can distinguish ones
based on inertial generalized coordinates and referring directly
to Hamilton’s principle or Lagrange equations [9], and meth-

ods involving the use of equations of analytical mechanics in
quasi-coordinates e.g. Boltzmann-Hamel equations [10].

The paper presents the following 6-DOF mathematical
models different in both dynamic and kinematic equations
of motion and the methods of describing aerodynamic forces
and moments acting on the projectile in flight:

1. Model using the ground-fixed system: equations for both
translational and rotational motion are derived in the
ground-fixed system O0123 (Fig. 1), kinematic equations
of rotational motion are used direction cosines of the ax-
es of symmetry of the projectile instead of quasi-Euler
angles, while aerodynamic forces and moments are deter-
mined basing on the total angle of attack αt (Fig. 1) [7,
11];

2. Model using the body axis system: equations for both trans-
lational and rotational motion are derived in the body axis
system Oxyz, kinematic equations of rotational motion are
used quasi-Euler angles Ψ, Θ, Φ (often called as aviation
angles), while aerodynamic forces and moments are deter-
mined using angle of attack α and angle of sideslip β [3];

3. Model using the velocity axis system: equations of motion
of center of mass are derived in the velocity axis system
Oxkykzk, equations of rotational motion about the center
of mass are derived in the body axis system Oxyz, kine-
matic equations of rotational motion are used quasi-Euler
angles Ψ, Θ, Φ, while aerodynamic forces and moments are
determined using angle of attack α and angle of sideslip β.

The foregoing mathematical models have been used to
developing software for simulating the flight of the Denel
155 mm artillery projectile (Assegai M2000 series) and to
conduct comprehensive research of the influence of the ap-
plied model and integration step on the accuracy and time of
computation of projectile trajectory.
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2. Mathematical model of flight dynamics

of the projectile as a rigid body

in the ground-fixed system

The mathematical model of flight dynamics of the projectile as
a rigid body in the ground-fixed system uses the right-handed
orthonormal Cartesian coordinate system O0123 referenced
to the gun position (Fig. 1), defined in STANAG 4355 ed. 3.
The location of the projectile center of mass relative to the
ground-fixed system is defined by vector X. The vector of
velocity of the projectile relative to air v is the difference be-
tween the vector of velocity of the projectile relative to the
ground u and the vector of velocity of wind w.

Fig. 1. Projectile position relative to the ground-fixed system O0123

The description of aerodynamic forces and moments af-
fecting the projectile in flight use the total angle of attack αt

contained between the longitudinal axis of the projectile Ox

and the vector of velocity of the projectile relative to air v

(Fig. 1) and two unit vectors (versors) x and iV applied to the
center of mass of the projectile:

– Unit vector x runs along the axis of symmetry of the pro-
jectile towards the tip (Fig. 1), in the ground-fixed system
it has components identified as follows x = [x1, x2, x3];

– Unit vector iV runs along the axis overlapping with the
vector of velocity of the projectile relative to air v, in the
ground-fixed system it has components identified as follows
v = [v1, v2, v3] and v =

√

v2
1

+ v2
2

+ v2
3
.

2.1. Vector form of equations of projectile motion in the

ground-fixed system. In the ground-fixed system, vector dif-
ferential equations of motion of the projectile as a rigid body
can be derived from the law of change of linear momentum
mu and of angular momentum of the body relative to the
projectile center of mass H. The total angular momentum of
the rotationally symmetric body can now be expressed as the
sum of two vectors [7]:

– the angular momentum about x (spin axis):

Ixpx, (1a)

– and the angular momentum about an axis perpendicular
to x:

Iy(x ×

dx

dt
), (1b)

where p is the rate of roll (axial spin), Ix is the moment of
inertia about the spin axis, and Iy is the moment of inertia
about any axis perpendicular to the spin axis.

Therefore, the total angular momentum of the projectile
can be represented by the vector:

H = Ixpx + Iy(x ×

dx

dt
). (2)

In its final vector form, the mathematical model contains
the following groups of equations [11]:

– Vector differential equations of motion of the projectile
center of mass:

m
du

dt
= DF + LF + MF + mg + mΛ, (3a)

dX

dt
= u. (3b)

– Vector differential equations of rotational motion about the
projectile center of mass:

dH

dt
= OM + PDM + MM + SDM, (4a)

dx

dt
=

(H× x)

Iy

. (4b)

Aerodynamic forces and moments occurring in the equa-
tions of motion were defined according to the BRL Aerobal-
listic System [7] while retaining conformity of the notation
with STANAG 4355 [11], a NATO official standardization
agreement.

The aerodynamic drag force DF opposes the forward ve-
locity of the projectile is given as Eq. (5a), and the scalar
magnitude of the force is stated as Eq. (5b):

DF = −(CD0
+ CD

α2
sin2 αt)

ρv2

2
SiV , (5a)

DF = −(CD0
+ CD

α2
sin2 αt)

ρv2

2
S, (5b)

where CD0
– zero-yaw drag coefficient, CD

α2
– yaw drag

coefficient, ρ – air density, S – the reference area.
The aerodynamic lift force LF is proportional to the sine

of the total angle of attack and always acts perpendicular to
the trajectory in the plane containing both the trajectory and
the projectile axis of rotational symmetry. The lift force is
stated in vector and scalar forms:

LF = (CLα
+ CL

α3
sin2 αt)

ρv2

2
S [iV × (x × iV )] , (6a)

LF = (CLα
+ CL

α3
sin2 αt)

ρv2

2
S sin αt, (6b)

where CLα
– linear lift force coefficient, CL

α3
– cubic lift

force coefficient.
The Magnus force MF is produced by unequal pressures

on opposite sides of a spinning body. The unequal pressures
are the result of viscous interaction between the fluid and
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spinning surface. The Magnus force always acts in a direction
perpendicular to the plane of total angle of attack. The vector
and scalar equations defining the Magnus force are:

MF =
ρv2

2
S

(

pd

v

)

Cmag−f (iV × x), (7a)

MF = Cmag−f

ρv2

2
S

(

pd

v

)

sin αt (7b)

where Cmag−f – Magnus force coefficient, pd
v

– normalized
rate of roll, d – the projectile reference diameter.

The Magnus moment MM can be either positive or neg-
ative, depending on the projectile shape, the center of mass
location, the amplitude of αt and the flight Mach number. The
Magnus moment is defined by the vector and scalar equations:

MM =
ρv2

2
Sd

(

pd

v

)

Cmag−m [x × (iV × x)] , (8a)

MM =
ρv2

2
Sd

(

pd

v

)

Cmag−m sin αt, (8b)

where Cmag−m – Magnus moment coefficient.
The overturning moment OM is the aerodynamic moment

associated with the lift force. If the projectile nose lies above
its trajectory, a positive overturning moment acts to increase
the total angle of attack. The overturning moment is given by
the vector and scalar equations:

OM =
(

CMα
+ CM

α3
sin2 αt

) ρv2

2
Sd(iV × x), (9a)

OM =
(

CMα
+ CM

α3
sin2 αt

) ρv2

2
Sd sin αt, (9b)

where CMα
– overturning moment coefficient, CM

α3
– cubic

overturning moment coefficient.
The spin damping moment SDM opposes the spin of the

projectile; it always reduces the axial spin. The vector spin
damping moment is defined as Eq. (10a), and the scalar mag-
nitude is given by Eq. (10b)

SDM =
ρv2

2
Sd

(

pd

v

)

Cspinx, (10a)

SDM = Cspin

ρv2

2
Sd

(

pd

v

)

, (10b)

where Cspin – spin damping moment coefficient.
The pitch damping moment PDM contains two parts, one

part proportional to transverse angular velocity qt and a sec-
ond part proportional to the rate of change of the total angle
of attack α̇t. Because of qt and α̇t are virtually identical in
practice, and the pitch damping moment is well approximated
by expressions:

PDM =
1

2
Sd2v

(

CMq
+ CMα̇

)

(

x ×

dx

dt

)

, (11a)

PDM =
ρv2

2
Sd

(

qtd

v

)

(

CMq
+ CMα̇

)

, (11b)

where CMq
– pitch damping moment coefficient due to qt,

CMα̇
– pitch damping moment coefficient due to α̇t.

Using the vector calculus rules and substitution v = viV ,
S = πd2/4, p = (H · x) /Ix, (x ×

dx
dt

) = (H− Ixpx) /Iy

equations (5)–(11) can be transformed to the following form:

DF = −

πρd2

8
(CD0

+ CD
α2

sin2 αt)vv, (12)

LF =
πρd2

8
(CLα

+ CL
α3

sin2 αt)
[

v2x− (v · x)v
]

, (13)

MF =
πρd3

8Ix

Cmag−f (H · x) (v × x), (14)

MM =
πρd4

8Ix

Cmag−m (H · x) [v − (v · x)x] , (15)

OM =
πρvd3

2

(

CMα
+ CM

α3
sin2 αt

)

(v × x), (16)

SDM =
πρd4v

8Ix

Cspin (H · x)x, (17)

PDM =
πρd4v

8Iy

(

CMq
+ CMα̇

)

[H− (H · x)x] . (18)

A spherical model of the Earth is given, the gravity force
vector can be presented in the ground-fixed system as follows:

mg = −mg0

(

R2/r3
)

r = m







g1

g2

g3







= −mg0







X1/R

1 − 2X2/R

X3/R






,

(19)

where r = X − R – defines the position of the projectile
relative to the center of mass of the Earth, R = 6356766 [m]
– radius of the sphere, locally approximating the geoid,
g0 = 9.80665(1 − 0.0026 cos(2lat)) [m/s2] – magnitude of
acceleration due to gravity at mean sea level, lat – latitude of
launch point; for southern hemisphere lat is negative [deg].

The Coriolis force can be expressed with the following
known equation:

mΛ = −2m (Ωz × u) , (20)

where Ωz –vector of angular velocity of the earth and its
components in ground-fixed system O0123,

Ωz =







Ωz1

Ωz2

Ωz3






=







Ωz cos(lat) cos(AZ)

Ωz sin(lat)

−Ωz cos(lat) sin(AZ)






, (21)

Ωz = 7.292115 10−5 [rad/s] – angular speed of the earth, AZ

– Azimuth (Bearing) of O01 axis measured clockwise from
true North [mil].
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2.2. Scalar form of equations of projectile motion in the

ground-fixed system. The scalar form of equations of projec-
tile motion have been obtained by projecting vector equations
(both translational and rotational motion) on the axes of the
ground-fixed coordinate system O0123. So construed mathe-
matical model is a system of differential-algebraic equations
including:

– Dynamic differential equations of motion of the projectile
center of mass derived from Eq. (3a):

du1

dt
= −

(

πρd2

8m

)

(

CD0
+CD

α2
sin2 αt

)

vv1

+

(

πρd2

8m

)

(

CLα
+ CL

α3
sin2 αt

) (

v2x1 − vv1 cosαt

)

−

πρd3Cmag−f

8mIx

(H1x1+H2x2+H3x3) (x2v3−x3v2)

−g0

X1

R
− 2Ω (sin(lat)u3 + cos(lat) sin(AZ)u2) ,

(22a)
du2

dt
= −

(

πρd2

8m

)

(

CD0
+CD

α2
sin2 αt

)

vv2

+

(

πρd2

8m

)

(

CLα
+CL

α3
sin2 αt

) (

v2x2 − vv2 cosαt

)

−

πρd3Cmag−f

8mIx

(H1x1+H2x2+H3x3) (x3v1−x1v3)

−g0

(

1 −

2X2

R

)

+2Ω (cos(lat) sin(AZ)u1 + cos(lat) cos(AZ)u3) ,
(22b)

du3

dt
= −

(

πρd2

8m

)

(

CD0
+CD

α2
sin2 αt

)

vv3

+

(

πρd2

8m

)

(

CLα
+CL

α3
sin2 αt

) (

v2x3−vv3 cosαt

)

−

πρd3Cmag−f

8mIx

(H1x1+H2x2+H3x3) (x1v2−x2v1)

−g0

(

X3

R

)

− 2Ω (cos(lat) cos(AZ)u2− sin(AZ)u1) .

(22c)

– Kinematic differential equations of motion of the projectile
center of mass derived from Eq. (3b):

dX1

dt
= u1, (23a)

dX2

dt
= u2, (23b)

dX3

dt
= u3. (23c)

– Dynamic differential equations of rotational motion about
the projectile center of mass derived from Eq. (4a):

dH1

dt
=

πρvd3

2

(

CMα
+ CM

α3
sin2 αt

)

(v2x3 − v3x2)

+
πρd4v

8Iy

(

CMq
+ CMα̇

)

[H1 − (H1x1 + H2x2 + H3x3)x1]

+
πρd4

8Ix

Cmag−m (H1x1 + H2x2 + H3x3) (v1 − vx1 cosαt)

+
πρd4v

8Ix

Cspin (H1x1 + H2x2 + H3x3)x1,

(24a)

dH2

dt
=

πρvd3

2

(

CMα
+ CM

α3
sin2 αt

)

(v3x1 − v1x3)

+
πρd4v

8Iy

(

CMq
+ CMα̇

)

[H2 − (H1x1 + H2x2 + H3x3)x2]

+
πρd4

8Ix

Cmag−m (H1x1 + H2x2 + H3x3) (v2 − vx2 cosαt)

+
πρd4v

8Ix

Cspin (H1x1 + H2x2 + H3x3)x2,

(24b)

dH3

dt
=

πρvd3

2

(

CMα
+ CM

α3
sin2 αt

)

(v1x2 − v2x1)

+
πρd4v

8Iy

(

CMq
+ CMα̇

)

[H3 − (H1x1 + H2x2 + H3x3)x3]

+
πρd4

8Ix

Cmag−m (H1x1 + H2x2 + H3x3) (v3 − vx3 cosαt)

+
πρd4v

8Ix

Cspin (H1x1 + H2x2 + H3x3)x3.

(24c)

– Kinematic differential equations of rotational motion about
the projectile center of mass for direction cosines derived
from Eq. (4b):

dx1

dt
=

(H2x3 − H3x2)

Iy

, (25a)

dx2

dt
=

(H3x1 − H1x3)

Iy

, (25b)

dx3

dt
=

(H1x2 − H2x1)

Iy

. (25c)

– Equations defining the total angle of attack derived from
the equation for scalar product:

cosαt =
(v · x)

v
=

v1x1 + v2x2 + v3x3

v
. (26)

– Equations for components and absolute value of the vector
of projectile velocity in air:

v1 = u1 − w1, v2 = u2 − w2, v3 = u3 − w3

v =
√

v2
1

+ v2
2

+ v2
3
.

(27)
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– Equations for initial conditions:

u1(t = 0) = MV cos(QE) cos(∆AZ),

u2(t = 0) = MV sin(QE),

u3(t = 0) = MV cos(QE) sin(∆AZ),

x1(t = 0) = cos(QE) cos(∆AZ),

x2(t = 0) = sin(QE),

x3(t = 0) = cos(QE) sin(∆AZ),

H1(t = 0) = Ixp0x1

−Iy(q0 sin(∆AZ) − r0 sin(QE) cos(∆AZ)),

H2(t = 0) = Ixp0x2 − Iyr0 cos(QE),

H3(t = 0) = Ixp0x3

+Iy(q0 cos(∆AZ) + r0 sin(QE) sin(∆AZ)),

where QE – vertical angle of the weapon barrel (quadrant
elevation) [mil], ∆AZ – difference between the weapon az-
imuth (bearing) and the 1 axis measured clockwise [mil], MV

– initial (muzzle) velocity [m/s], p0 = 2πMV
ηd

– initial roll
velocity about the x axis (initial rate of roll) [rad/s], q0 –
initial pitch velocity about the y axis (initial rate of pitch)
[rad/s], r0 – initial yaw velocity about the z axis (initial rate
of yaw) [rad/s], η – the twist rate in the end of the gun barrel
(expressed in calibers per revolution).

3. Mathematical models of flight dynamics

of the projectile as a rigid body

in systems moving together with the projectile

The modeling of flight dynamics of the projectile as a rigid
body in systems moving together with the projectile uses the
standard coordinate systems conforming to Polish and Inter-
national Standard ISO 1151 [3] and the velocity axis system
Oxkykzk (Fig. 2) defined as follows: the origin of the sys-
tem overlaps with the center of mass of the projectile, axis
xk follows the vector of velocity of the projectile relative to
the ground u, axis zk lays on the vertical plane crossing the
vector of velocity u and is oriented down, axis yk lays on
the horizontal plane and completes the system to make it the
right-handed one.

The determination of aerodynamic forces and moments
affecting the projectile in flight uses the following: angle of
attack α and angle of sideslip β. Then, the transformation ma-
trix between the air-path axis system Oxayaza and the body
axis system Oxyz has the following form:

Lαβ =







cosα cosβ cosα sin β − sinα

− sin β cosβ 0

sin α cosβ sin α sin β cosα






. (28)

The description of the vector of the projectile velocity u

position relative to the normal earth axis system uses the fol-
lowing: azimuth angle of the projectile velocity χ, and incli-
nation angle of the projectile velocity γ. The derived transfor-

mation matrix between the normal earth axis system Oxgygzg

and the velocity axis system Oxkykzk has the following form:

Lγχ =







cos γ cosχ cosγ sin χ − sinγ

− sinχ cosχ 0

sinγ cosχ sin γ sin χ cos γ






. (29)

Fig. 2. Diagram of coordinate systems used for modeling and angular
relations between the systems

The description of the projectile position relative to the
normal earth axis system uses the following: azimuth angle Ψ,
inclination angle Θ and bank angle Φ. The derived transfor-
mation matrix between the normal earth axis system Oxgygzg

and the body axis system Oxyz has the following form:

LΦΘΨ =

2666666664 cos Θ cosΨ cos Θ sin Ψ − sin Θ

− cosΦ sin Ψ+

sin Φ sin Θcos Ψ

cos Φ cos Ψ+

sin Φ sin Θ sin Ψ
sin Φ cosΘ

sin Φ sin Ψ+

cos Φ sin Θ cosΨ

− sin Φ cos Ψ+

cosΦ sin Θ sin Ψ
cos Φ cos Θ

3777777775 .

(30)

3.1. Vector form of equations of projectile motion in sys-

tems moving together with the projectile. Based on the law
of change of momentum and angular momentum, spatial mo-
tion of the projectile as a rigid body can be described in the
system moving together with the projectile and centered in
the center of mass of the projectile with the following vector
equations [2]:

m

(

δu

dt
+ Ωr × u

)

= RA + mg + mΛ, (31a)

δH

dt
+ Ωr × H = MA

O, (31b)

where Ωr – vector of angular velocity of the system moving
together with the projectile relative to the normal earth axis
system Oxgygzg , RA = [XA

a , Y A
a , ZA

a ] – vector of aerody-
namic force acting on the projectile and its components in the
air-path axis system Oxayaza, MA

O = [LA, MA, NA] – vector
of aerodynamic moment acting on the projectile relative to its
center of mass and its components in the body axis system
Oxyz.
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XA
a = −i

[

CD0
+ CD

α2
(sin2 α + sin2 β)

] ρv2

2
S, (32a)

Y A
a =

[

fL(CLα
+ CL

α3
sin2 β) sin β + Cmag−f

(

pd

v

)

sin α

]

ρv2

2
S, (32b)

ZA
a =

[

−fL(CLα
+ CL

α3
sin2 α) sin α + Cmag−f

(

pd

v

)

sinβ

]

ρv2

2
S, (32c)

LA = Cspin

(

pd

v

)

ρv2

2
Sd, (33a)

MA =

[

(CMα
+ CM

α3
sin2 α) sin α + CMq

(

qd

v

)

− Cmag−m

(

pd

v

)

sin β

]

ρv2

2
Sd, (33b)

NA =

[

(CMα
+ CM

α3
sin2 β) sin β + CMq

(

rd

v

)

+ Cmag−m

(

pd

v

)

sin a

]

ρv2

2
Sd. (33c)

The scalar form of the foregoing vector equations (within
appropriate coordinate systems), together with the comple-
mentary equations, represents a mathematical model of mo-
tion of the projectile as a rigid body in real conditions.

3.2. Mathematical model of the projectile motion in the

body axis system Oxyz. If motion of the projectile is re-
ferred to the body axis system Oxyz overlapping with the
principal central axes of inertia, the mathematical model of
motion of the projectile as a rigid body can be described with
the following groups of equations in the vector-matrix form:

– Dynamic differential equations of motion of the projectile
center of mass







u̇x

u̇y

u̇z






= Lαβ







XA
a /m

Y A
a /m

ZA
a /m







+LΦΘΨ







gxg
+ Λxg

gyg
+ Λyg

gzg
+ Λzg






+







0 r −q

−r 0 p

q −p 0













ux

uy

uz






,

(34)
where

Components of Coriolis acceleration in the system
Oxgygzg have the following form:







Λxg

Λyg

Λzg







=







2Ω
(

cos(lat) sin(AZ)uzg
− sin(lat)uyg

)

2Ω
(

cos(lat) cos(AZ)uzg
+ sin(lat)uxg

)

−2Ω
(

cos(lat) cos(AZ)uyg
+ cos(lat) sin(AZ)uxg

)






.

(35)
For spherical model of the Earth, components of gravita-
tional acceleration in the system Oxgygzg can be expressed

as follows [13]






gxg

gyg

gzg






= g0







−xg/Rz

−yg/Rz

1 + 2zg/Rz






. (36)

– Kinematic differential equations of motion of the projectile
center of mass
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ẏg
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= LT
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. (37)

– Dynamic differential equations of rotational motion about
the projectile center of mass in the body axis system Oxyz

overlapping with the principle central axes of inertia
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ṗ

q̇

ṙ
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(38)

– Kinematic differential equations of rotational motion about
the projectile center of mass






Ψ̇

Θ̇

Φ̇






=







0 sinΦ/cosΘ cosΦ/cosΘ

0 cosΦ − sin Φ

1 sinΦtgΘ cosΦtgΘ













p

q

r






.

(39)
– Equations for angle of attack α and angle of sideslip β

The equations can be derived by representing the com-
ponents of vector v in the body axis system Oxyz with
components in the air-path axis system Oxayaza







vx

vy

vz






= Lαβ







v

0

0






(40)
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Using the transformation matrix (28), the components can
be written in the following form

vx = v cosα cosβ, (41a)

vy = −v sin β, (41b)

vz = v sin α cosβ. (41c)

Transforming Eq. (41b) provides an equation for the angle
of sideslip:

sin β = −

vy

v
. (42)

And dividing Eq. (41c) by Eq. (41a) provides an equation
for the angle of attack

tgα =
vz

vx

. (43)

– Complementary equation

γ = arcsin
uzg

u
, χ = arctg

uyg

uxg

, (44)

vx = ux − wx, vy = uy − wy ,

vz = uz − wz,
(45)

v =
√

v2
x + v2

y + v2
z ,

u =
√

u2
xg

+ u2
yg

+ u2
zg

,
(46)

where u , v – projectile velocity with respect to the ground
and respect to the air, respectively, [vx, vy, vz] – compo-
nents of vector of projectile velocity with respect to the air
v in the body axis system Oxyz, [ux, uy, uz] – components
of vector of projectile velocity with respect to the ground u

in the body axis system Oxyz, [uxg
, uyg

, uzg
] – components

of vector of projectile velocity with respect to the ground u

in the normal earth axis system Oxgygzg, [wxg
, wyg

, wzg
]

– components of vector of wind velocity with respect to
the ground w in the normal earth axis system Oxgygzg,
[wx, wy , wz] – components of vector of wind velocity with
respect to the ground w in the body axis system Oxyz,







wx

wy

wz






= LΦΘΨ







wxg

wyg

wzg






. (47)

– Equations for initial conditions

ux(t = 0) = MV, uy(t = 0) = 0, uz(t = 0) = 0,

Ψ(t = 0) = ∆AZ, Θ(t = 0) = QE, Φ(t = 0) = 0.

3.3. Mathematical model of the projectile motion in the

velocity axis system Oxkykzk. In this model, the dynamic
differential equations of motion of the projectile center of
mass have been derived in velocity axis system Oxkykzk and
the dynamic differential equations of rotational motion about
the projectile center of mass in the body axis system Oxyz.
The following is a complete system of equations:

– Dynamic differential equations of motion of the projectile
center of mass in the velocity axis system Oxkykzk:







mu̇

(mu cos γ)χ̇

−muγ̇






= LγχLT

ΦΘΨLαβ







XA
a

Y A
a

ZA
a







+Lγχ







gxg
+ Λxg

gyg
+ Λyg

gzg
+ Λzg






.

(48)

– Kinematic differential equations of motion of the projectile
center of mass:







ẋg

ẏg

żg






=







uxg

uyg

uzg






= LT

γχ







u

0

0






. (49)

– Dynamic and kinematic differential equations of rotational
motion about the projectile center of mass (see Eqs. (38)
and (39), respectively).

– Equations for components of vector of projectile velocity
with respect to the air v in the body axis system Oxyz







vx

vy

vz






= LΦΘΨ







uxg
− wxg

uyg
− wyg

uzg
− wzg






. (50)

– Equations for angle of attack α and angle of sideslip β (see
Eqs. (43) and (42), respectively).

– Equations for initial conditions:

u(t = 0) = MV, χ(t = 0) = ∆AZ, γ(t = 0) = QE,

Ψ(t = 0) = ∆AZ, Θ(t = 0) = QE, Φ(t = 0) = 0.

4. Results of numerical computations

Research into the effect of the mathematical model and inte-
gration step on the accuracy of the results of computation of
artillery projectile flight parameters was done on an example
of simulation of firing from a gun with the twist rate, η = 20
calibers, using Denel 155mm Assegai M2000 series artillery
projectile (as the test projectile). See Fig. 3 for an overview
and main dimensions, and Table 1 for physical characteristics,
of the test projectile.

Table 2 specifies the aerodynamic characteristics of the
test projectile computed using PRODAS 3.5.3 software appli-
cation from Arrow Tech for:

p∗ = pd/v, q∗ = qd/v, r∗ = rd/v

and S = πd2/4.

Linear interpolation was used for computing the values of
aerodynamic characteristics between the nodal points.
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Fig. 3. Contour sketch of the Denel 155mm Assegai M2000 series projectile

Table 1
Physical characteristics of the Denel 155mm Assegai M2000 series projectile

Projectile diameter d 0.155 m

Fuze projectile mass m 43.7 kg

Center of gravity from nose xCG 0.563 m

Axial moment of inertia Ix 0.1444 kgm2

Transverse moment of inertia Iy 1.7323 kgm2

Table 2
Tabulated aerodynamic characteristics of the 155mm Assegai M2000 series projectile (STANAG 4355 ed3 aeroballistic nomenclature)

Ma CD0
CD

α2
CLα

CL
α3

Cmag−f Cspin CMα
Cmag−m CMq

[–] [–] [–] [–] [–] [–] [–] [–] [–] [–]

0.010 0.144 3.520 1.480 −1.900 −0.425 −0.0154 3.755 −0.270 −4.75

0.400 0.144 3.520 1.480 −1.900 −0.425 −0.0154 3.784 −0.270 −4.60

0.600 0.144 3.540 1.490 −1.910 −0.425 −0.0154 3.774 −0.270 −4.75

0.700 0.144 3.730 1.490 −2.100 −0.430 −0.0154 3.763 −0.330 −4.90

0.800 0.146 3.960 1.510 −2.300 −0.440 −0.0154 3.785 −0.425 −5.50

0.900 0.160 4.480 1.590 −2.740 −0.475 −0.0153 3.843 −0.490 −7.00

0.950 0.202 4.990 1.700 −3.090 −0.600 −0.0148 3.825 −0.335 −8.40

0.975 0.240 5.260 1.720 −3.300 −0.535 −0.0146 3.736 −0.230 −9.40

1.000 0.284 5.510 1.720 −3.510 −0.495 −0.0145 3.577 −0.210 −10.40

1.025 0.313 5.780 1.760 −3.700 −0.475 −0.0145 3.570 −0.090 −10.90

1.050 0.332 6.000 1.800 −3.870 −0.460 −0.0146 3.558 0.055 −11.30

1.100 0.337 6.570 1.870 −4.360 −0.430 −0.0149 3.601 0.165 −11.40

1.200 0.340 7.150 1.960 −4.860 −0.390 −0.0151 3.675 0.260 −12.15

1.350 0.333 6.730 2.030 −4.370 −0.350 −0.0150 3.823 0.375 −12.80

1.500 0.321 6.320 2.100 −3.910 −0.340 −0.0146 4.014 0.410 −13.15

2.000 0.276 5.510 2.390 −2.850 −0.310 −0.0141 3.774 0.390 −14.05

2.500 0.240 5.030 2.550 −2.230 −0.305 −0.0134 3.583 0.340 −14.75

3.000 0.214 4.650 2.630 −1.810 −0.305 −0.0128 3.460 0.365 −14.70

Numerical computations made during the simulation of
firing with the test projectile under different mathematical
models used different integration steps. To solve the differ-
ential equations of motion the Runge-Kutta method has been
used. The values of the particular trajectory parameters ob-
tained for successive incremented integration steps have been
used for computing errors produced by each integration step
based on the following equations:

E
r,hi =

Par
hi − Parh1

Parh1

100%, (1)

where E
r,hi – relative error in computation of particular tra-

jectory parameters for i-th integration step relative to the pa-
rameters from step h1, Par

hi – values of particular trajectory

parameters obtained for step hi.
The following were included as the particular trajectory

parameters: Xend – range [m], yend – drift [m], tend – time
of flight [s], Vend – final velocity of projectile [m/s], γend –
angle of fall [mil], Hmax – vertex [m].

Tables 3–5 show the results of computation of the particu-
lar trajectory parameters in standard conditions (International
Standard Atmosphere [13]) obtained by simulating a flat tra-
jectory (QE = 200 [mil]) and Tables 6–8 show the results
for a steep trajectory (QE = 1200 [mil]), given the following
initial conditions:

MV = 481 [m/s], p0 = 847.2 [rad/s],

q0 = 0 [rad/s], r0 = −1.9 [rad/s].
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Table 3
Effect of integration step on accuracy of computation of the particular trajectory parameters of the projectile in the model based on the ground-fixed system

for the flat trajectory (QE = 200 [mil])

h1 = 0.00125 h2 = 0.0025 h3 = 0.005 h4 = 0.01 Er,h2 Er,h3 Er,h4

[s] [s] [s] [s] [%] [%] [%]

Xend [m] 6164.5135 6164.5108 6164.4241 6161.9281 0.000 0.001 0.042

yend [m] 34.0830 34.0830 34.0822 34.0576 0.000 0.002 0.075

tend [s] 17.0414 17.0414 17.0413 17.0389 0.000 0.001 0.015

Vend [m/s] 309.8931 309.8930 309.8889 309.7715 0.000 0.001 0.039

γend [mil] 268.0926 268.0927 268.0950 268.1615 0.000 −0.001 -0.026

Hmax [m] 362.6128 362.6127 362.6099 362.5311 0.000 0.001 0.023

Table 4
Effect of integration step on accuracy of computation of the particular trajectory parameters of the projectile in the model based on the velocity axis system

for the flat trajectory (QE = 200 [mil])

h1 = 0.0001 h2 = 0.0002 h3 = 0.0004 h4 = 0.0008 Er,h2 Er,h3 Er,h4

[s] [s] [s] [s] [%] [%] [%]

Xend [m] 6164.4496 6164.5581 6164.7640 6163.0461 −0.002 −0.005 0.023

yend [m] 34.0967 34.0998 34.1483 34.8188 −0.009 −0.151 −2.118

tend [s] 17.0414 17.0414 17.0418 17.0376 0.000 −0.002 0.022

Vend [m/s] 309.8908 309.8909 309.8935 309.8857 0.000 −0.001 0.002

γend [mil] 268.0940 268.0942 268.0984 268.0740 0.000 −0.002 0.007

Hmax [m] 362.6110 362.6119 362.6299 362.5560 0.000 −0.005 0.015

Table 5
Effect of integration step on accuracy of computation of the particular trajectory parameters of the projectile in the model based on the body axis system for

the flat trajectory (QE = 200 [mil])

h1 = 0.000025 h2 = 0.00005 h3 = 0.0001 h4 = 0.0002 Er,h2 Er,h3 Er,h4

[s] [s] [s] [s] [%] [%] [%]

Xend [m] 6164.4503 6164.4706 6164.7960 6169.9909 0.000 −0.006 −0.090

yend [m] 34.0965 34.0965 34.0999 34.2651 0.000 −0.010 −0.494

tend [s] 17.0414 17.0414 17.0425 17.0600 0.000 −0.006 −0.109

Vend [m/s] 309.8908 309.8906 309.8874 309.8364 0.000 0.001 0.018

γend [mil] 268.0940 268.0943 268.0982 268.1630 0.000 −0.002 −0.026

Hmax [m] 362.6111 362.6125 362.6360 363.0114 0.000 −0.007 −0.110

Table 6
Effect of integration step on accuracy of computation of the particular trajectory parameters of the projectile in the model based on the ground-fixed system

for the steep trajectory (QE = 1200 [mil])

h1 = 0.00125 h2 = 0.0025 h3 = 0.005 h4 = 0.01 Er,h2 Er,h3 Er,h4

[s] [s] [s] [s] [%] [%] [%]

Xend [m] 9112.771 9112.7630 9112.4993 9105.0793 0.000 0.003 0.084

yend [m] 573.0663 573.0655 573.0406 572.3381 0.000 0.004 0.127

tend [s] 72.2363 72.2363 72.2356 72.2156 0.000 0.001 0.029

Vend [m/s] 318.5454 318.5451 318.5362 318.2845 0.000 0.003 0.082

γend [mil] 1294.1357 1294.1359 1294.1428 1294.3350 0.000 −0.001 −0.015

Hmax [m] 6390.8858 6390.8819 6390.7549 6387.1735 0.000 0.002 0.058

Table 7
Effect of integration step on accuracy of computation of the particular trajectory parameters of the projectile in the model based on the velocity axis system

for the steep trajectory (QE = 1200 [mil])

h1 = 0.0001 h2 = 0.0002 h3 = 0.0004 h4 = 0.0008 Er,h2 Er,h3 Er,h4

[s] [s] [s] [s] [%] [%] [%]

Xend [m] 9112.6954 9112.6975 9112.8361 9105.6282 0.000 −0.002 0.078

yend [m] 575.3380 575.3759 575.9839 584.7120 −0.007 −0.112 −1.629

tend [s] 72.2286 72.2286 72.2311 72.2295 0.000 −0.003 −0.001

Vend [m/s] 319.0354 319.0395 318.9534 316.1508 −0.001 0.026 0.904

γend [mil] 1294.2454 1294.2382 1294.1260 1293.1527 0.001 0.009 0.084

Hmax [m] 6390.8126 6390.8275 6391.1622 6390.4171 0.000 −0.005 0.006
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Table 8
Effect of integration step on accuracy of computation of the particular trajectory parameters of the projectile in the model based on the body axis system for

the steep trajectory (QE = 1200 [mil])

h1 = 0.000025 h2 = 0.00005 h3 = 0.0001 h4 = 0.0002 Er,h2 Er,h3 Er,h4

[s] [s] [s] [s] [%] [%] [%]

Xend [m] 9112.6976 9112.7278 9113.1671 9118.8079 0.000 −0.005 −0.067

yend [m] 575.3357 575.3453 575.6690 586.2775 −0.002 −0.058 −1.902

tend [s] 72.2287 72.2295 72.2416 72.4336 −0.001 −0.018 −0.284

Vend [m/s] 319.0346 319.0351 319.0461 319.3948 0.000 −0.004 −0.113

γend [mil] 1294.2497 1294.2508 1294.3050 1295.1064 0.000 −0.004 −0.066

Hmax [m] 6390.8137 6390.8416 6391.2889 6398.4636 0.000 −0.007 −0.120

5. Conclusions

The results of computations (see Tables 3–8 for example val-
ues) substantiate the following conclusions:

1) The same computation accuracy can be obtained for dif-
ferent models by using different maximum integration steps,
provided that using quasi-Euler angles (Bryan angles) or
quaternions in kinematic equations has no effect on the value
of integration step;

2) To obtain a defined computation accuracy for the par-
ticular trajectory parameters of the projectile, the model based
on the body axis system should use the smallest integration
step, the model based on the velocity axis system should use
a 5 times larger integration step and the model based on the
ground-fixed system should use even 100 times larger inte-
gration step;

3) To obtain computation accuracy of 0.1% for drift (yend)
and 0.02% for the remaining parameters, the model based on
the body axis system should use an integration step enabling
approx. 100 computations per projectile revolution (h = 0.01T
where T – period of projectile rotation);

4) The computation results for the models based on the
body axis and velocity axis systems are similar, but different
from those provided by the model based on the ground-fixed
system, specifically for the steep trajectory where total angle
of attack αt becomes larger than 10 [deg] on the trajectory
vertex. The cause of the difference is that, for the model based
on the ground-fixed system, aerodynamic forces and moments
depend on total angle of attack αt and the remaining models
depend on angle of attack α and angle of sideslip β. Accord-
ingly, total aerodynamic forces and moments computed using
these models will be different because the following equation
is true only for small angles of attack and sideslip:

αt
∼=

√

α2 + β2;

5) The model based on the ground-fixed system, using
direction cosines of the axes of symmetry of the projectile
instead of quasi-Euler angles is the best mathematical mod-
el in terms of speed and computation accuracy. This model
has one additional advantage: no singularities in the equations

of motion, which happens in the other models for inclination
angle of the projectile Θ = 90◦.
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