PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of LTCC Technology for Millimeter Waves and Photonics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
VTT Technical Research Centre of Finland Ltd. has developed and utilized Low Temperature Co-fired Ceramic (LTCC) technology for about 25 years. This paper presents our activities related to photonics and millimetre-waves, including also a relevant literature survey. First a short summary of the technology is given. Especially, the unique features of LTCC technology are described in more details. In addition, several examples have been given to show the validity of LTCC technology in these high-performance fields.
Słowa kluczowe
Rocznik
Strony
361--367
Opis fizyczny
Bibliogr. 31 poz., fot., rys., wykr.
Twórcy
autor
  • VTT Technical Research Centre of Finland Ltd.
autor
  • VTT Technical Research Centre of Finland Ltd.
  • VTT Technical Research Centre of Finland Ltd.
  • VTT Technical Research Centre of Finland Ltd.
autor
  • VTT Technical Research Centre of Finland Ltd.
  • VTT Technical Research Centre of Finland Ltd.
Bibliografia
  • [1] H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications”, IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 256–263, Sep. 2011.
  • [2] T. Kürner, “Towards future THz communications systems,” Int. J. Terahertz Sci. Technol., vol. 5, no. 1, pp. 11–17, Mar. 2012.
  • [3] J. Ala-Laurinaho, J. Aurinsalo, A. Karttunen, M. Kaunisto, A. Lamminen, J. Nurmiharju, A. Räisänen, J. Säily, and P. Wainio, “2-D beam-steerable integrated lens antenna system for 5G E-band access and backhaul,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, pp. 2244–2255, Jul. 2016.
  • [4] J. Hatch, A. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 845–860, Mar. 2012.
  • [5] C. Dehos, J. L. Gonz´alez, A. D. Domenico, D. Ktnas, and L. Dussopt, “Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems?” IEEE Commun. Mag., vol. 52, no. 9, pp. 88–95, Sep. 2014.
  • [6] P. Karioja, K. Keränen, M. Karppinen, K. Kautio, V. Heikkinen, M. Lahti, J. Ollila, J-T. Mäkinen, K. Kataja, J. Tuominen, T. Jaakola, S-H. Park, P. Korhonen, T. Alajoki, A. Tanskanen, J. Lenkkeri, and J. Heilala, ”LTCC toolbox for photonics integration”, IMAPS/ACerS Int’l Conf. and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT, April 25-27, 2006, Denver, USA, 12 pages.
  • [7] D. Jurkow, T. Maeder, A. Dabrowski, M.S. Zarnik, D. Belavic, H. Bartsch, and J. Muller, “Overview on low temperature co-fired ceramic sensors”, Sensors and Actuators A 233, 2015, pp. 125-146.
  • [8] B. Anderson, S. Horio, K. Kobayashi, and N. Tamada, “Thin-film fine-pattern technology for LTCC multilayer substrates”, Electronic Components and Technology Conference, May 29 – June 1, 2007, Reno, Nevada, USA.
  • [9] Ferro Corporation, November 2015, accessed 30 January 2020, < https://www.ferro.com/-/media/files/resources/electronic-materials/ferro-electronic-materials-a6m-e-ltcc-tape-system.pdf >
  • [10] M. Ma, Y. Wang, M. Navarro-Cia, F. Liu, F. Zhang, Z. Liu, Y. li, S. Hanham, and Z. Hao, “The dielectric properties of some ceramic substrate materials at terahertz frequencies”, Journal of the European Ceramic Society, Vol. 39, No, 14, November 2019, pp. 4424-4428.
  • [11] F. Lautzenhiser, Q. Reynolds, M. Lahti, and K. Kautio, “High Frequency Performance Characterisation of HeraLock (R) HL2000 Zero Shrink Low Temperature Cofire Ceramic”, European Microwave Conference, WS8, October 6-10, 2003, Munich, Germany, pp. 13-16.
  • [12] B. Brandt, and T. Rabe, “Surface characteristics of LTCC substrates fabricated by pressure-assisted sintering”, J. of Microelectronics and Electronic Packaging (2013) 10, p. 144-149.
  • [13] K. Kautio, K. Keränen, J. Ollila, J-T. Mäkinen, J. Hiltunen, and P. Karioja, “Precision alignment and cooling structures for photonic packaging on LTCC”, IMAPS Conference on Ceramic Interconnect Technology. 2004. Denver.
  • [14] K. Keränen, J-T. Mäkinen, J. Heilala, O. Väätäinen, K. Kautio, J. Ollila, J. Petäjä, M. Karppinen, M. Heikkinen, and P. Karioja, “Cost-effective packaging of laser modules using LTCC substrate”, Proc. of SPIE, vol. 5358. 2004. San Jose.
  • [15] M. Karppinen, K. Kautio, M. Heikkinen, J. Häkkilä, P. Karioja, T. Jouhti, A. Tervonen, and M. Oksanen, “Passively aligned fiber-optic transmitter integrated into LTCC module”, in Proc. of 51st Electronic Components and Technology Conference. 2001. Orlando.
  • [16] N. Ngah, A. Rasmi, A. Ibrahim, Z. Ambak, M. Yusoff, and R. Alias, “Thermal management study of LTCC PIN photodiode module”, Materials Science Forum, Vol. 934, 2018, pp 13-17.
  • [17] IMST, 2020, accessed 30 January 2020, < http://www.radar-sensor.com >
  • [18] F. Sickinger, E. Weissbrodt, and M. Vossiek, “76-81 GHz LTCC antenna for an automotive miniature radar frontend”, Int’l Journal of Microwave and Wireless Technologies, Vol. 10, Special Issue 5-6, June 2018, pp. 729-736.
  • [19] F. Manzillo, M. Smierzchalski, L. Le Coq, M. Ettorre, J. Aurinsalo, K. Kautio, M. Lahti, A. Lamminen, J. Säily, and R. Sauleua, ”A wide-angle scanning switched-beam antenna system in LTCC technology with high beam crossing levels for V-band communications”, IEEE Transactions on Antennas and Propagation, Vol. 67, Issue 1, Jan. 2019, pp. 541-553.
  • [20] A. Lamminen, “Design of millimetre-wave antennas on LTCC and PCB technologies”, Dr. Thesis, Aalto University, 2019, 80 p.
  • [21] J. Qian, M. Tang, Q. Chen, Y-P. Zhang, and J. Mao, “Integration of S/Ka/D-band antennas in LTCC with a cylindrical radome for triband applications”, IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, September 2019, pp. 5781-5789.
  • [22] Anaren, 2019, Accessed 30 January 2020, < https://www.anaren.com/capabilities/ltcc-solutions >
  • [23] I. Wolff, R. Kulke and T. Klein, “LTCC: A Space Qualified Integration and Packing Technology for Millimeter-Wave Systems”, International Microwave Symposium, June 17-22, 2012, Montreal, Canada.
  • [24] J. Xu, Z. N. Chen, X. Qing, W. Hong, “140-GHz planar broadband LTCC SIW slot antenna array”, IEEE Prog. on Antennas and Propagation, Vol. 60, No. 6, June 2012, p. 3025-3028.
  • [25] VTT Ltd, 2014, Accessed 30 January 2020, < http://www.vtt.fi/files/research/mel/ltcc_design_rules.pdf >
  • [26] T. Tajima, H-J. Song, and M. Yaita, “Compact THz LTCC receiver module for 300 GHz wireless communications”, IEEE Microwave and Wireless Components Letters, Vol. 26, No. 4, April 2016, pp. 291-293.
  • [27] P. Karioja, K. Kautio, J. Ollila, K. Keränen, M. Karppinen, V. Heikkinen, T. Jaakola, and M. Lahti, “MEMS, MOEMS, RF-MEMS and photonics packaging based on LTCC technology”, Proceedings of the 5th Electronics System-integration Technology Conference, ESTC, September 16-18, 2014, Helsinki, Finland, Institute of Electrical and Electronic Engineers IEEE, 6 p.
  • [28] R. Chutani, S. Galliou, N. Passilly, C. Gorecki, A. Sitomaniemi, M. Heikkinen, K. Kautio, A. Keränen, and A. Jornod, ”Thermal management of fully LTCC-packaged Cs vapour cell for MEMS atomic clock”, Sensors & Actuators A 174, 2012, pp. 58-68.
  • [29] J. Haesler, K. Kautio, L. Balet, S. Karlen, T. Overstolz, B. Gallinet, S. Lecomte, F. Droz, P. Karioja, and M. Lahti, ”Ceramic based flat form factor miniature atomic clock physics package”, Workshop on Microwave Technology and Techniques, April 3-5, 2017, Noordwijk, The Netherlands.
  • [30] L. Devlin, “Designing cost competitive E-band radio front-ends”, Automated RF & Microwave Measurement Society (ARRMS) Conference, Oxfordshire, UK, April, 2013.
  • [31] C-T. Wang, L-H. Hsu, W-C. Wu, H-T. Hsu, E. Y. Chang. Y. Hu, C. K. M. Lee, and S-P. Tsai, “Investigation of the flip-chip package with BCB underfill for W-band applications”, IEEE Microwave and Wireless Components Letters, Vol. 24, No. 1, January 2014, pp. 11-13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-183b326a-3a27-415b-9709-b41d422ee313
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.