PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Universal sets for ideals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the notion of universal sets for ideals. We show that there exist universal sets of minimal Borel complexity for classical ideals like the null subsets of 2ω and the meager subsets of any Polish space, and demonstrate that the existence of such sets is helpful in establishing some facts about the real line in generic extensions. We also construct universal sets for E, the σ-ideal generated by closed null subsets of 2ω, and for some ideals connected with forcing notions: the Kσ subsets of ωω and the Laver ideal. We also consider Fubini products of ideals and show that there are Σ03 universal sets for N[symbol]M and M[symbol]N.
Rocznik
Strony
157--166
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Department of Computer Science, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Department of Computer Science, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] M. Balcerzak and Sz. Głąb, Measure-category properties of Borel plane sets and Borel functions of two variables, Acta Math. Hungar. 126 (2010), 241-252.
  • [2] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A K Peters, 1995.
  • [3] P. Borodulin-Nadzieja and Sz. Głąb, Ideals with bases of unbounded Borel complexity, Math. Logic Quart. 57 (2011), 582-590.
  • [4] J. Brendle, Y. Khomskii and W. Wohofsky, Cofinalities of Marczewski-like ideals, Colloq. Math. 150 (2017), 269-279.
  • [5] J. Cichoń and J. Pawlikowski, On ideals of subsets of the plane and on Cohen reals, J. Symbolic Logic 51 (1986), 561-569.
  • [6] D. H. Fremlin, The partially ordered sets of measure theory and Tukey’s ordering, Note Mat. 11 (1991), 177-214.
  • [7] T. Jech, Set Theory. The Third Millennium Edition, Revised and Expanded, Springer Monogr. Math., Springer, 2003.
  • [8] H. Judah, A. Miller and S. Shelah, Sacks forcing, Laver forcing, and Martin’s axiom, Arch. Math. Logic 31 (1992), 145-161.
  • [9] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995.
  • [10] A. Krzeszowiec, Uniquely universal sets in R x ω and [0, 1] x ω, Topology Appl. 182 (2015), 132-134.
  • [11] K. Kunen, Random and Cohen reals, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 887-911.
  • [12] A. W. Miller, Uniquely universal sets, Topology Appl. 159 (2012), 3033-3041.
  • [13] J. Pawlikowski and I. Recław, Parametrized Cichoń’s diagram and small sets, Fund. Math. 147 (1995), 135-155.
  • [14] R. Rałowski and Sz. Żeberski, Generalized Luzin sets, Houston J. Math. 39 (2013), 983-993.
  • [15] I. Recław and P. Zakrzewski, Fubini properties of ideals, Real Anal. Exchange 25 (1999), 565-578.
  • [16] S. M. Srivastava, A Course on Borel Sets, Grad. Texts in Math. 180, Springer, New York, 1998.
  • [17] J. Zapletal, Descriptive set theory and definable forcing, Mem. Amer. Math. Soc. 167 (2004), no. 793, viii+141 pp.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1835d568-5309-44bb-974e-0dc7efcc8b82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.