Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Reliability-oriented approach based on Monte Carlo simulations is a well-established methodology for coordinating maintenance activities of any technical system. Usually, coordination is conducted using holistic performance indicators, which are obtained from the convolution between the stochastic system availability and the system service required in a time horizon of t. Specifically, the system stochastic availability modeling is composed of the degradation process due to the system operation and the planning of the maintenance activities needed to keep the system operating at the desired standards. In the case of the degradation modeling process, given its random nature, it is addressed with predictions, which in practice, consist of generating random samples of the stochastic degradation processes from probability distributions, and the parameterization is usually estimated by fitting the distributions to historical degradation data for each technical component considered. Crucial to forecasting accurate performance indicators is the use of up-to-date information, i.e., the self-update of historical degradation data. In this paper, to address accurate performance indicators, we propose using the machine learning approach to update the adaptable model layers affected by changes in the degradation data. The paper's case study is an overhead crane system of a hot rolling mill process in a steel plant, which operates under hazardous conditions and continuously. We focus on overhead cranes because they are critical components of production processes. The paper's subject is validating the performance of a self-analysis layer, which processes the degradation data of the analyzed technical devices. The engineering solution ensures well-processed inputs for the problem of coordination of maintenance activities of overhead cranes, which is the object of the study of this research.
Rocznik
Tom
Strony
601--609
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- AGH University of Krakow, Kraków, Poland
autor
- AGH University of Krakow, Kraków, Poland
Bibliografia
- [1] Canek Jackson, Rodrigo Pascual. (2021). Joint pricing and maintenance strategies in availability-based product-service systems under different overhaul conditions. Reliability Engineering & System Safety, 216, 107817.
- [2] Deng X., Yanga X., Zhang Y., Lia Y., and Lua Z. (2019). Risk propagation mechanisms and risk management strategies for a sustainable perishable products supply chain. Computers & Industrial Engineering, 135, 1175–1187.
- [3] Domazet, Z., Luka, F., and Bugarin, M. (2014). Failure of two overhead crane shafts. Engineering Failure Analysis, 44, 125-135.
- [4] Hanumant P. Jagtap, Anand K. Bewoor, Ravinder Kumar, Mohammad Hossein Ahmadi, Lingen Chen. (2020). Performance analysis and availability optimization to improve maintenance schedule for the turbo-generator subsystem of a thermal power plant using particle swarm optimization. Reliability Engineering & System Safety, 204, 107130.
- [5] Hsu, K., Novara, C., Vincent, T., Milanese, M., Poolla, K. (2006). Parametric and non-parametric curve fitting. Automatica, 42, 1869–1873.
- [6] Jingyuan Shen, Lirong Cui, Yizhong Ma. (2019). Availability and optimal maintenance policy for systems degrading in dynamic environments. European Journal of Operational Research, 276 (1), 133-143.
- [7] Kimiya Zakikhani, Fuzhan Nasiri, Tarek Zayed. (2020). Availability-based reliability-centered maintenance planning for gas transmission pipelines. International Journal of Pressure Vessels and Piping, 183, 104105.
- [8] Lei X. and MacKenzie C.A. (2019). Assessing risk in different types of supply chains with a dynamic fault tree. Computers & Industrial Engineering, 137, 106061.
- [9] Lu, B., Fang, Y., and Sun, N. (2018). Modeling and non-linear coordination control for an underactuated dual overhead crane system. Automatica, 91, 244-255.
- [10] Marquez, A., Venturino, P., and Otegui, J. (2014). Common root causes in recent failures of cranes. Engineering Failure Analysis, 39, 55-64.
- [11] Mori, Y. and Tagawa, Y. (2018). Vibration controller for overhead cranes considering limited horizontal acceleration. Control Engineering Practice, 81, 256-263.
- [12] Naichao Wang, Jiawen Hu, Lin Ma, Boping Xiao, Haitao Liao. (2020). Availability Analysis and Preventive Maintenance Planning for Systems with General Time Distributions. Reliability Engineering & System Safety, 201, 106993.
- [13] Putnik, G.D., Manupati V.K., Pabba S.K., Varela L., Ferreira, F. (2021). Semi-Double-loop machine learning based CPS approach for predictive maintenance in manufacturing system based on machine status indications. CIRP Annals - Manufacturing Technology,70, 365-368.
- [14] Qian, D. and Yi, J. (2016). Hierarchical Sliding Mode Control for Underactuated Cranes: Design, Analysis and Simulation. Springer, Berlin.
- [15] Rusinski, E., Iluk, A., Malcher, K., and Pietrusiak, D. (2013). Failure analysis of an overhead traveling crane lifting system operating in a turbo generator hall. Engineering Failure Analysis, 31, 90-100.
- [16] Sidibé I.B., Khatab A., Diallo C., Adjallah K.H. (2016). Kernel estimator of maintenance optimization model for a stochastically degrading system under different operating environments. Reliability Engineering & System Safety, 147, 109-116.
- [17] Steurtewagen, B., Van den Poel, D. (2021). Adding interpretability to predictive maintenance by machine learning on sensor data. Computers and Chemical Engineering, 152, 107381.
- [18] Szpytko J. and Salgado Duarte Y. (2020a): Integrated maintenance platform for critical cranes under operation: Database for maintenance purposes. IFAC-PapersOnLine, 53(3), 167-172.
- [19] Szpytko, J. and Salgado Duarte, Y. (2020b). Exploitation Efficiency System of Crane based on Risk Management. In Proceeding of International Conference on Innovative Intelligent Industrial Production and Logistics (IN4PL 2020), 24-31. ISBN: 978-989-758-476-3.
- [20] Theissler, A., Pérez-Velázquez J., Kettelgerdes M., Elger G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability Engineering and System Safety, 215, 107864.
- [21] Wang H., Yan Q., Zhang S. (2021). Integrated scheduling and flexible maintenance in deteriorating multi-state single machine system using a reinforcement learning approach. Advanced Engineering Informatics, 49, 101339.
- [22] Zonta T., Andre da Costa C., Zeiser F.A., de Oliveira Ramos G., Kunst R., da Rosa Righi R. (2022). A predictive maintenance model for optimizing production schedule using deep neural networks. Journal of Manufacturing Systems, 62, 450-462.
Uwagi
1. Pełne imiona podano na stronie internetowej czasopisma w "Authors in other databases."
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18345a93-3da2-451f-ac42-8b7206cf5948
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.