PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gaseous Nitriding of Binary Ni-Cr Alloys - Observation and Interpretation of Microstructural Features

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gaseous nitriding of binary Ni-Cr solid-solution alloys was studied at 1125ºC over the range 1 to 6000 bar of N2-pressure. At the specified temperature the nitriding response of the Ni-Cr alloys depends on the Cr-content in the initial alloy and activity (fugacity) of nitrogen at the gas/metal interface. Transition from cubic δ-CrN to hexagonal β-Cr2N precipitation occurs within the reaction zone after nitrogenization at 1125ºC under nitrogen pressure 100-6000 bar when chromium content in the initial alloy is 28 at. % or higher. It was found that a ternary phase, π (Cr12.8Ni7.2N4.0) is formed inside the Ni32Cr alloy upon cooling in nitrogen after nitriding at 1125ºC and 1 bar of N2. Experimental evidence is presented that π-phase is involved in peritectoid relations with β-Cr2N and γ-(Ni-Cr) solid solution. It was also demonstrated that nitriding behaviour of the Ni-Cr alloy can be rationalized using pertinent phase diagram information, but, in some cases, effect of mechanical stresses induced upon the internal precipitation can vitiate this prediction.
Twórcy
autor
  • Mat-Tech BV, Development & Testing, Son, The Netherlands
autor
  • University of Debrecen Hungary Faculty of Sciences and Technology, Department of Solid State Physics, Hungary
Bibliografia
  • [1] A.A. Kodentsov, Diffusion-Controlled Internal Precipitation Reactions, in: A. Paul, S. Divinski, (Eds.), Handbook of Solid-State Diffusion, Elsevier (2017).
  • [2] A. Kodentsov, Diffusion-limited reactions of non-oxide ceramics with transition metals, in: A. Paul (Ed.), Diffusion Foundations 21, Trans Tech Publications Ltd (2019).
  • [3] P. Nash, Bull. Alloy Phase Diagrams 7, 466-476 (1986).
  • [4] H.A. Wriedt, N-Ni (Nitrogen-Nickel), in: P. Nash, (Ed.), Phase Diagrams of Binary Nickel Alloys, ASM International, (1990).
  • [5] M. Venkatraman, J.P. Neumann, in: T.D. Massalski, (Ed.), Binary Alloy Phase Diagrams, ASM International (1991).
  • [6] S.Y. Chang, U. Krupp, H.-J. Christ, Materials Sci. Eng. A A301 196-206 (2001).
  • [7] R.P. Rubly, D.L. Douglass, Oxid. Met. 35 259-278 (1991).
  • [8] A.A. Kodentsov, J.H. Gülpen, Cs. Cserháti, J.K. Kivilahti, F.J.J. van Loo, Metall. Mater. Trans. A 27A, 59-69 (1996).
  • [9] A.A. Kodentsov, M.J.H. van Dal, Cs. Cserháti, J.K. Kivilahti, F.J.J. van Loo, Defect Diffusion Forum 143-147, 1619-1624 (1997).
  • [10] A.A. Kodentsov, M.J.H. van Dal, Cs. Cserháti, L. Daróczi, F.J.J. van Loo, Acta Mater. 47, 3169-3180 (1999).
  • [11] F.J. Kedves, L. Gergely, G. Erdélyi, Acta Physica et Chimica Debrecina, 71-85 (1982).
  • [12] C.A. Wallace, R.C.C. Ward, J. Appl. Cryst. 8, 255-260 (1975).
  • [13] JCPDS file No. 35-803, International Center for Diffraction Data, PCPDFWIN v. 2.02, 1999.
  • [14] N. Ono, M. Kajihara, M. Kikuchi, Met. Trans. A 23A, 1389-1393 (1992).
  • [15] JCPDS file No. 77-0047), International Center for Diffraction Data, PCPDFWIN v. 2.02, 1999.
  • [16] H. Schmalzried, Chemical Kinetics of Solids, VCH Publisher (1995).
  • [17] K. Frisk, PhD thesis, A Study of the Thermodynamic Properties of the Cr-Fe-Mo-Ni-N System, Royal Institute of Technology, Stockholm, Sweden (1990).
  • [18] A.A. Kodentsov, M.J.H. van Dal, J.K. Kivilahti, F.J.J. van Loo, Ber. Bunsenges. Phys. Chem. 102, 1326-1333 (1998).
  • [19] S.I. Sandler, Chemical and Engineering Thermodynamics, John Wiley & Sons (1999).
  • [20] J.R. Mackert, R.D. Ringle, C. Fairhurst, J. Dent. Res. 62, 1229-1235 (1983).
  • [21] S. Guruswamy, S.M. Park, J.P. Hirth, R.A. Rapp, Oxid. Met. 26, 77-100 (1986).
  • [22] H.C. Yi, S.W. Guan, W.W. Smeltzer, A. Petric, Acta Metall. Mater. 42, 981-990 (1994).
  • [23] G.C. Savva, G.C. Weatherly, J.S. Kirkaldy, Scripta Mater. 34, 1087-1093 (1996).
  • [24] R.L. Squires, R.T. Weiner, M. Phillips, J. Nucl. Mater. 8, 77-80 (1963).
  • [25] E.H. Aigeltinger, R.C. Gifkins, Met. Trans. A, 6A, 2310-2311 (1975).
  • [26] G.W. Greenwood, H. Jones, T. Sritharan, Phil. Mag. 41, 871-882 (1980).
  • [27] C. Wagner, Z. Elektrochem. 63, 772-790 (1959).
  • [28] R.A. Rapp, Kinetics, Corrosion 21, 382-401 (1965).
  • [29] G.C. Savva, G.C. Weatherly, J.S. Kirkaldy, Metall. Mater. Trans. A 27A, 1611-1622 (1996).
  • [30] W. Mayr, W. Lengauer, P. Ettmayer, D. Rafaja, J. Bauer, M. Bohn, J. Phase Equilibria, 20, 35-44 (1999).
  • [31] C. Wagner, Corr. Sci. 8, 889-893 (1968).
  • [32] M. Katsura, J. Alloys Compd. 182, 91-102 (1992).
  • [33] E.J. Mittemeijer, M.A.J. Somers, Surf. Eng. 13, 483-497 (1997).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-182f13ac-97f6-4ac1-901f-8ab53928bc58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.