Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Gaseous nitriding of binary Ni-Cr solid-solution alloys was studied at 1125ºC over the range 1 to 6000 bar of N2-pressure. At the specified temperature the nitriding response of the Ni-Cr alloys depends on the Cr-content in the initial alloy and activity (fugacity) of nitrogen at the gas/metal interface. Transition from cubic δ-CrN to hexagonal β-Cr2N precipitation occurs within the reaction zone after nitrogenization at 1125ºC under nitrogen pressure 100-6000 bar when chromium content in the initial alloy is 28 at. % or higher. It was found that a ternary phase, π (Cr12.8Ni7.2N4.0) is formed inside the Ni32Cr alloy upon cooling in nitrogen after nitriding at 1125ºC and 1 bar of N2. Experimental evidence is presented that π-phase is involved in peritectoid relations with β-Cr2N and γ-(Ni-Cr) solid solution. It was also demonstrated that nitriding behaviour of the Ni-Cr alloy can be rationalized using pertinent phase diagram information, but, in some cases, effect of mechanical stresses induced upon the internal precipitation can vitiate this prediction.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1007--1020
Opis fizyczny
Bibliogr. 33 poz., fot., rys., wykr.
Twórcy
autor
- Mat-Tech BV, Development & Testing, Son, The Netherlands
autor
- University of Debrecen Hungary Faculty of Sciences and Technology, Department of Solid State Physics, Hungary
Bibliografia
- [1] A.A. Kodentsov, Diffusion-Controlled Internal Precipitation Reactions, in: A. Paul, S. Divinski, (Eds.), Handbook of Solid-State Diffusion, Elsevier (2017).
- [2] A. Kodentsov, Diffusion-limited reactions of non-oxide ceramics with transition metals, in: A. Paul (Ed.), Diffusion Foundations 21, Trans Tech Publications Ltd (2019).
- [3] P. Nash, Bull. Alloy Phase Diagrams 7, 466-476 (1986).
- [4] H.A. Wriedt, N-Ni (Nitrogen-Nickel), in: P. Nash, (Ed.), Phase Diagrams of Binary Nickel Alloys, ASM International, (1990).
- [5] M. Venkatraman, J.P. Neumann, in: T.D. Massalski, (Ed.), Binary Alloy Phase Diagrams, ASM International (1991).
- [6] S.Y. Chang, U. Krupp, H.-J. Christ, Materials Sci. Eng. A A301 196-206 (2001).
- [7] R.P. Rubly, D.L. Douglass, Oxid. Met. 35 259-278 (1991).
- [8] A.A. Kodentsov, J.H. Gülpen, Cs. Cserháti, J.K. Kivilahti, F.J.J. van Loo, Metall. Mater. Trans. A 27A, 59-69 (1996).
- [9] A.A. Kodentsov, M.J.H. van Dal, Cs. Cserháti, J.K. Kivilahti, F.J.J. van Loo, Defect Diffusion Forum 143-147, 1619-1624 (1997).
- [10] A.A. Kodentsov, M.J.H. van Dal, Cs. Cserháti, L. Daróczi, F.J.J. van Loo, Acta Mater. 47, 3169-3180 (1999).
- [11] F.J. Kedves, L. Gergely, G. Erdélyi, Acta Physica et Chimica Debrecina, 71-85 (1982).
- [12] C.A. Wallace, R.C.C. Ward, J. Appl. Cryst. 8, 255-260 (1975).
- [13] JCPDS file No. 35-803, International Center for Diffraction Data, PCPDFWIN v. 2.02, 1999.
- [14] N. Ono, M. Kajihara, M. Kikuchi, Met. Trans. A 23A, 1389-1393 (1992).
- [15] JCPDS file No. 77-0047), International Center for Diffraction Data, PCPDFWIN v. 2.02, 1999.
- [16] H. Schmalzried, Chemical Kinetics of Solids, VCH Publisher (1995).
- [17] K. Frisk, PhD thesis, A Study of the Thermodynamic Properties of the Cr-Fe-Mo-Ni-N System, Royal Institute of Technology, Stockholm, Sweden (1990).
- [18] A.A. Kodentsov, M.J.H. van Dal, J.K. Kivilahti, F.J.J. van Loo, Ber. Bunsenges. Phys. Chem. 102, 1326-1333 (1998).
- [19] S.I. Sandler, Chemical and Engineering Thermodynamics, John Wiley & Sons (1999).
- [20] J.R. Mackert, R.D. Ringle, C. Fairhurst, J. Dent. Res. 62, 1229-1235 (1983).
- [21] S. Guruswamy, S.M. Park, J.P. Hirth, R.A. Rapp, Oxid. Met. 26, 77-100 (1986).
- [22] H.C. Yi, S.W. Guan, W.W. Smeltzer, A. Petric, Acta Metall. Mater. 42, 981-990 (1994).
- [23] G.C. Savva, G.C. Weatherly, J.S. Kirkaldy, Scripta Mater. 34, 1087-1093 (1996).
- [24] R.L. Squires, R.T. Weiner, M. Phillips, J. Nucl. Mater. 8, 77-80 (1963).
- [25] E.H. Aigeltinger, R.C. Gifkins, Met. Trans. A, 6A, 2310-2311 (1975).
- [26] G.W. Greenwood, H. Jones, T. Sritharan, Phil. Mag. 41, 871-882 (1980).
- [27] C. Wagner, Z. Elektrochem. 63, 772-790 (1959).
- [28] R.A. Rapp, Kinetics, Corrosion 21, 382-401 (1965).
- [29] G.C. Savva, G.C. Weatherly, J.S. Kirkaldy, Metall. Mater. Trans. A 27A, 1611-1622 (1996).
- [30] W. Mayr, W. Lengauer, P. Ettmayer, D. Rafaja, J. Bauer, M. Bohn, J. Phase Equilibria, 20, 35-44 (1999).
- [31] C. Wagner, Corr. Sci. 8, 889-893 (1968).
- [32] M. Katsura, J. Alloys Compd. 182, 91-102 (1992).
- [33] E.J. Mittemeijer, M.A.J. Somers, Surf. Eng. 13, 483-497 (1997).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-182f13ac-97f6-4ac1-901f-8ab53928bc58