PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TLS and low-cost UAV photogrammetry as an effective combination of spatial data collection methods for creating detailed 3D surface models (DEM)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of surveying methods and equipment has moved from conventional surveying methods to modern technologies such as Unmanned Aerial Vehicle (UAV) aerial photogrammetry or Terrestrial Laser Scanning (TLS). Our research deals with the comparison of spatial data obtained by these methods in the surface quarry Dreveník, Slovakia. Point clouds obtained by both methods were compared using CloudCompare and Leica Cyclone 3DR software. The mean absolute distance of the point clouds was 2.02 cm and the standard deviation between point clouds was 2.48 cm. Our results confirmed the compatibility and the possibility of combining point clouds.
Słowa kluczowe
Czasopismo
Rocznik
Strony
163--178
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Technical University of Košice, Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Košice, Slovak Republic
  • Technical University of Košice, Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Košice, Slovak Republic
  • Technical University of Košice, Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Košice, Slovak Republic
  • Technical University of Košice, Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Košice, Slovak Republic
  • Technical University of Košice, Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Košice, Slovak Republic
Bibliografia
  • 1. Ajayi O.G., Ajulo J. (2021). Investigating the Applicability of Unmanned Aerial Vehicles (UAV) Photogrammetry for the Estimation of the Volume of Stockpiles. Quaestiones Geographicae, vol. 40, no. 1, pp. 25–38. https://doi.org/10.2478/quageo-2021-0002
  • 2. Bariczová G., Erdélyi J., Honti R., Tomek L. (2021). Wall Structure Geometry Verification Using TLS Data and BIM Model. Applied Sciences, 11, 11804. https://doi.org/10.3390/app112411804
  • 3. Blišťan P., Kovanič Ľ., Zelizňaková V., Palková J. (2016). Using UAS photogrammetry to document rock outcrops. Acta Montanistica Slovaca, 21, 154–161.
  • 4. Cao L., Liu H., Fu X., Zhang Z., Shen X., Ruan H. (2019). Comparison of UAV LiDAR and Digital Aerial Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests. Forests, 10, 145. https://doi.org/10.3390/f10020145
  • 5. Ćwiąkała P., Gruszczyński W., Stoch T., Puniach E., Mrocheń D., Matwij W., Matwij K., Nędzka M., Sopata P., Wójcik A. (2020). UAV Applications for Determination of Land Deformations Caused by Underground Mining. Remote Sensing, 12, 1733. https://doi.org/10.3390/rs12111733
  • 6. DJI (2023). PHANTOM 4 RTK Specs. https://www.dji.com/sk/phantom-4-rtk/info#specs [access: 27.04.2023].
  • 7. DJI (2023). PHANTOM 4 RTK. https://www.dji.com/sk/phantom-4-rtk [access: 27.04.2023].
  • 8. Erdélyi J., Kopáčik A., Kyrinovič P. (2020). Spatial Data Analysis for Deformation Monitoring of Bridge Structures. Applied Sciences, 10, 8731, https://doi.org/10.3390/app10238731
  • 9. Fetai B., Oštir K., Kosmatin Fras M., Lisec A. (2019). Extraction of Visible Boundaries for Cadastral Mapping Based on UAV Imagery. Remote Sensing, 11, 1510. https://doi.org/10.3390/rs11131510
  • 10. Fiz J.I., Martín P.M., Cuesta R., Subías E., Codina D., Cartes A. (2022). Examples and Results of Aerial Photogrammetry in Archeology with UAV: Geometric Documentation, High Resolution Multispectral Analysis, Models and 3D Printing. Drones, 6, 59. https://doi.org/10.3390/drones6030059
  • 11. Forlani G., Dall’Asta E., Diotri F., di Cella U.M., Roncella R., Santise M. (2018). Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sensing, 10, 311. https://doi.org/10.3390/rs10020311
  • 12. Gantimurova S., Parshin A., Erofeev V. (2021). GIS-Based Landslide Susceptibility Mapping of the Circum-Baikal Railway in Russia Using UAV Data. Remote Sensing, 13, 3629. https://doi.org/10.3390/rs13183629 Geotech s.r.o. 2023. Leica GS07. https://www.geotech.sk/Produkty/GPS-GNSS/Leica-GS07.html [access: 27.04.2023].
  • 13. Geotech s.r.o. 2023. Leica RTC360. https://www.geotech.sk/Produkty/Laserove- skenery-HDS/Leica-RTC360.html [access: 27.04.2023].
  • 14. Geotech s.r.o. 2023. Leica RTC360. https://www.geotech.sk/downloads/Laserove- skenery-HDS/Leica_RTC360_sk2.pdf [access: 27.04.2023].
  • 15. Germanese D., Leone G.R., Moroni D., Pascali M.A., Tampucci M. (2019). Towards Structural Monitoring and 3D Documentation of Architectural Heritage Using UAV. In: K. Choroś, M. Kopel, E. Kukla, A. Siemiński (ed.), Multimedia and Network Information Systems. MISSI 2018. Advances in Intelligent Systems and Computing, vol. 833. Springer, Cham. https://doi.org/10.1007/978-3-319-98678-4_34
  • 16. Jacko S., Farkašovský R., Ďuriška I., Ščerbáková B., Bátorová K. (2021). Critical Tectonic Limits for Geothermal Aquifer Use: Case Study from the East Slovakian Basin Rim. Resources, 10, 31. https://doi.org/10.3390/resources10040031
  • 17. Junaid M., Abdullah R.A., Sa’ari R. et al. (2022). Quantification of Rock Mass Condition Based on Fracture Frequency Using Unmanned Aerial Vehicle Survey for Slope Stability Assessment. Journal of the Indian Society Remote Sensing, 50, 2041–2054. https://doi.org/10.1007/s12524-022-01578-9
  • 18. Kovanič Ľ., Blistan P., Rozložník M., Szabó G. (2021). UAS RTK / PPK photogrammetry as a tool for mapping the urbanized landscape, creating thematic maps, situation plans and DEM. Acta Montanistica Slovaca, vol. 26 (4), pp. 649-660. https://doi.org/10.46544/AMS.v26i4.05
  • 19. Kovanič L., Blišťan P., Štroner M., Urban R., Blišťanova M. (2021). Suitability of Aerial Photogrammetry for Dump Documentation and Volume Determination in Large Areas. Applied Sciences, 11, 6564.
  • 20. Kovanič Ľ., Blistan P., Urban R., Štroner M., Blišťanová M., Bartoš K., Pukanská K. (2020). Analysis of the Suitability of High-Resolution DEM Obtained Using ALS and UAS (SfM) for the Identification of Changes and Monitoring the Development of Selected Geohazards in the Alpine Environment – A Case Study in High Tatras, Slovakia. Remote Sensing, 12, 3901.
  • 21. Kovanič Ľ., Blistan P., Urban R., Štroner M., Pukanská K., Bartoš K., Palková J. (2020). Analytical Determination of Geometric Parameters of the Rotary Kiln by Novel Approach of TLS Point Cloud Segmentation. Applied Sciences, 10, 7652. https://doi.org/10.3390/app10217652
  • 22. Kovanič Ľ. (2013). Possibilities of terrestrial laser scanning method in monitoring of shape deformation in mining plants. Inżynieria Mineralna. Journal of the Polish Mineral Engineering Society, 31, 29–41.
  • 23. Kovanič Ľ., Štroner M., Blistan P., Urban R., Boczek R. (2023). Combined Ground-Based and UAS SfM-MVS Approach for Determination of Geometric Parameters of the Large-Scale Industrial Facility – Case Study. Measurement, 216, 112994. doi:10.1016/j.measurement.2023.112994
  • 24. Kunina I.A., Teplyakov L.M., Gladkov A.P., Khanipov T.M., Nikolaev D.P. (2018). Aerial images visual localization on a vector map using color-texture segmentation. Proceedings SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017), 106961T (13 April 2018). https://doi.org/10.1117/12.2310138
  • 25. Kyriou A., Nikolakopoulos K., Koukouvelas I., Lampropoulou P. (2021). Repeated UAV Campaigns, GNSS Measurements, GIS, and Petrographic Analyses for Landslide Mapping and Monitoring. Minerals, 11, 300. https://doi.org/10.3390/min11030300
  • 26. Lambertini A., Mandanici E., Tini M.A., Vittuari L. (2022). Technical Challenges for Multi- Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture. Remote Sensing, 14, 4954. https://doi.org/10.3390/rs14194954
  • 27. Lin G., Sang K. (2022). Application of UAV-Based Oblique Photography in Architectural Design: The Case of Mengyuan Resort Hotel in Yunnan, China. In: T. Kang, Y. Lee, (ed.). Proceedings of 2021 4th International Conference on Civil Engineering and Architecture. Lecture Notes in Civil Engineering, vol. 201. Springer, Singapore. https://doi.org/10.1007/978-981-16-6932-3_38
  • 28. Marčiš M., Fraštia M., Kovanič Ľ., Blišťan P. (2023). Deformations of Image Blocks in Photogrammetric Documentation of Cultural Heritage – Case Study: Saint James’s Chapel in Bratislava, Slovakia. Applied Sciences, 13, 261. https://doi.org/10.3390/app13010261
  • 29. Marín-Buzón C., Pérez-Romero A., Tucci-Álvarez F., Manzano-Agugliaro F. (2020). Assessing the Orange Tree Crown Volumes Using Google Maps as a Low-Cost Photogrammetric Alternative. Agronomy, 10, 893. https://doi.org/10.3390/agronomy10060893
  • 30. Migliazza M., Carriero M.T., Lingua A., Pontoglio E., Scavia C. (2021). Rock Mass Characterization by UAV and Close-Range Photogrammetry: A Multiscale Approach Applied along the Vallone dell’Elva Road (Italy). Geosciences, 11, 436. https://doi.org/10.3390/geosciences11110436
  • 31. Park S., Choi Y. (2020). Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review. Minerals, 10, 663
  • 32. Pukanská K., Bartoš K., Bella P., Gašinec J., Blistan P., Kovanič Ľ. (2020). Surveying and High-Resolution Topography of the Ochtiná Aragonite Cave Based on TLS and Digital Photogrammetry. Applied Sciences, 10, 4633.
  • 33. Puniach E., Bieda A., Ćwiąkała P., Kwartnik-Pruc A., Parzych P. (2018). Use of Unmanned Aerial Vehicles (UAVs) for Updating Farmland Cadastral Data in Areas Subject to Landslides. ISPRS International Journal of Geo-Information, 7, 331. https://doi.org/10.3390/ijgi7080331
  • 34. Ren H., Zhao Y., Xiao W., Wang X., Sui T. (2020). An Improved Ground Control Point Configuration for Digital Surface Model Construction in a Coal Waste Dump Using an Unmanned Aerial Vehicle System. Remote Sensing, 12, 1623. https://doi.org/10.3390/rs12101623
  • 35. Šafář V., Potůčková M., Karas J., Tlustý J., Štefanová E., Jančovič M., Cígler Žofková D. (2021). The Use of UAV in Cadastral Mapping of the Czech Republic. ISPRS International Journal of Geo-Information, 10, 380. https://doi.org/10.3390/ijgi10060380
  • 36. Salach A., Bakuła K., Pilarska M., Ostrowski W. Górski K., Kurczyński Z. (2018). Accuracy Assessment of Point Clouds from LiDAR and Dense Image Matching Acquired Using the UAV Platform for DTM Creation. ISPRS International Journal of Geo-Information, 7, 342. https://doi.org/10.3390/ijgi7090342
  • 37. Santagata T. (2017). Monitoring of the Nirano Mud Volcanoes Regional Natural Reserve (North Italy) using Unmanned Aerial Vehicles and Terrestrial Laser Scanning. Journal of Imaging, 3, 42. https://doi.org/10.3390/jimaging3040042
  • 38. Schroder W., Murtha T., Golden C., Scherer A.K., Broadbent E.N., Almeyda Zambrano A.M., Herndon K., Griffin R. (2021). UAV LiDAR Survey for Archaeological Documentation in Chiapas, Mexico. Remote Sensing, 13, 4731. https://doi.org/10.3390/rs13234731
  • 39. Sofranko M., Zeman R. (2014). Simulation of pipeline transport backfill mixtures. 15th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, May 28th – 30th 2014, IEEE, pp. 578–583.
  • 40. Spišské Podhradie (2023). https://www.spisskepodhradie.sk/ [access: 27.04.2023].
  • 41. Štroner M., Urban R., Reindl T., Seidl J., Brouček J. (2020). Evaluation of the Georeferencing Accuracy of a Photogrammetric Model Using a Quadrocopter with Onboard GNSS RTK. Sensors, 20, 2318.
  • 42. Štroner M., Urban R., Seidl J., Reindl T., Brouček J. (2021). Photogrammetry Using UAV- Mounted GNSS RTK: Georeferencing Strategies without GCPs. Remote Sensing, 13, 1336. https://doi.org/10.3390/rs13071336
  • 43. Tomaštík J., Mokroš M., Surový P., Grznárová A., Merganič J. (2019). UAV RTK/PPK Method – An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sensing, 11, 721. https://doi.org/10.3390/rs11060721
  • 44. Univerzita Komenského v Bratislave (2023). Významné Paleontologické lokality Slovenska. https://www.paleolocalities.com/index.php/lokalita/show/7 [access: 27.04.2023].
  • 45. Úrad geodézie, kartografie a katastra SR. 2023. Mapový klient ZBGIS. https://zbgis.skgeodesy.sk/mkzbgis/sk/kataster?pos=48.800000,19.530000,8 [access: 27.04.2023].
  • 46. Urban R., Štroner M., Blistan P., Kovanič Ľ., Patera M., Jacko S., Ďuriška I., Kelemen M., Szabo S. (2019). The Suitability of UAS for Mass Movement Monitoring Caused by Torrential Rainfall – A Study on the Talus Cones in the Alpine Terrain in High Tatras, Slovakia. ISPRS International Journal of Geo-Information, 8, 317. https://www.mdpi.com/2220-9964/8/8/317
  • 47. Vanneschi C., Di Camillo M., Aiello E., Bonciani F., Salvini R. (2019). SfM-MVS Photogrammetry for Rockfall Analysis and Hazard Assessment Along the Ancient Roman Via Flaminia Road at the Furlo Gorge (Italy). ISPRS International Journal of Geo-Information, 8, 325. https://doi.org/10.3390/ijgi8080325
  • 48. Wallace L., Lucieer A., Malenovský Z., Turner D., Vopěnka P. (2016). Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests, 7, 62. https://doi.org/10.3390/f7030062
  • 49. Wittenberger G., Sofranko M. (2015). Formation and protection against incrustation on the geothermal pipe by utilizing of geothermal water in the area of Ďurkov (Eastern Slovakia). Acta Montanistica Slovaca, 20, 10–15.
  • 50. Zeybek M. (2021). Accuracy assessment of direct georeferencing UAV images with onboard global navigation satellite system and comparison of CORS/RTK surveying methods. Measurement Science and Technology, 32, 065402. https://iopscience.iop.org/article/10.1088/1361-6501/abf25d
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-182eaa0d-8bfa-45f8-91ce-4f28c8c4bd59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.