PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparing variance of signal contained in the most recent GRACE solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gravity Recovery and Climate Experiment (GRACE) mission data is widely used in various fields of science. GRACE explored changes of the gravity field regularly from April 2002 to June 2017. In the following research, we examine variance of signal contained in two different formats of GRACE data: standard spherical harmonics and mass concentration blocks (so-called “mascons”) solutions, both provided in the most recent releases. For spherical harmonics-based solution, we use monthly gravity field solutions provided up to degree and order (d/o) 96 by three different computing centers, i.e. the NASA’s Jet Propulsion Laboratory (JPL), the German Research Center for Geosciences (GFZ) and the Center for Space Research (CSR). For the mass concentration blocks, we use values of total water storage provided by the CSR, JPL and the Goddard Space Flight Center (GSFC) computing centers, which we convert to spherical harmonic coefficients up to d/o 96. We show that using the anisotropic DDK3 filter to smooth the north-south stripes present in total wate storage obtained from standard spherical harmonics solution leaves more information than common isotropic Gaussian filter. In the case of mascons, GSFC solution contains much more information than the CSR and JPL releases, relevant for corresponding d/o. Differences in variance of signal arise from different background models as well as various shape and size of mascons used during processing of GRACE observations.
Rocznik
Strony
19--37
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
autor
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
Bibliografia
  • [1] A, Geruo,Wahr, J., and Zhong S. (2013). Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int., 192, 557–572. DOI: 10.1093/gji/ggs030.
  • [2] Andrews, S.B., Moore, P. and King, M.A. (2014). Mass change from GRACE: a simulated comparison of Level-1B analysis techniques. Geophys. J. Int., 200(1), 503–518. DOI: 10.1093/gji/ggu402.
  • [3] Bettadpur, S. (2018). GRACE 327-742 (CSR-GR-12-xx) (Gravity Recovery and Climate Experiment), UTCSR Level-2 Processing Standards Document (Rev. 5.0, April 18, 2018), (For Level-2 Product Release 0006), Center for Space Research, The University of Texas at Austin.
  • [4] Bouman, J. and Fuchs, M.J. (2012). GOCE gravity gradients versus global gravity field models. Geophys. J. In., 189(2), 846–850. DOI: 10.1111/j.1365-246X.2012.05428.x.
  • [5] Bruinsma, S., Lemoine, J., Biancale, R. and Vales, N. (2010). CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv. Sp. Res., 45, 587–601. DOI: 10.1016/j.asr.2009.10.012.
  • [6] Carrere, L. and Lyard F. (2003). Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing Comparisons with observations. Geoph. Res. Lett., 30(6), 1275. DOI: 10.1029/2002GL016473.
  • [7] Chambers, D.P. and Bonin, J.A. (2012). Evaluation of release-05 GRACE time variable gravity coefficients over the ocean. Ocean Sci., 8(5), 859–868. DOI: 10.5194/os-8-859-2012.
  • [8] Chen, J.L., Wilson, C.R. and Tapley, B.D. (2006). Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science, 313, 1958–1960. DOI: 10.1126/science1129007.
  • [9] Cheng, M. and Tapley, B.D. (2004). Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res., 109, B09402. DOI: 10.1029/2004JB003028.
  • [10] Cheng, M.K. and Ries J.C. (2017). The unexpected signal in GRACE estimates of C20. J. Geod., 91, 897–914. DOI: 10.1007/s00190-016-0995-5.
  • [11] Dah-Ning, Y. (2018). GRACE 327-744 (Gravity Recovery and Climate Experiment), JPL Level-2 Processing Standards Document, For Level-2 Product Release 06 (June 1, 2018), Jet Propulsion Laboratory, California Institute of Technology.
  • [12] Dahle, C., Flechtner, F., Murböck, M., Michalak, G., Neumayer, H., Abrykosov, O., Reinhold, A. and König, R. (2018). GRACE 327-743 (Gravity Recovery and Climate Experiment), GFZ Level-2 Processing Standards Document for Level-2 Product Release 06 (Rev. 1.0, October 26, 2018), (Scientific Technical Report STR – Data; 18/04), Potsdam: GFZ German Research Centre for Geosciences. DOI: 10.2312/GFZ.b103-18048.
  • [13] Farrell, W.E. (1972). Deformation of earth by surface loads. Rev. Geophys. Space Phys., 10, 761–797. DOI: 10.1029/RG010i003p00761.
  • [14] Feng, W. (2019). GRAMAT: a comprehensive Matlab toolbox for estimating global mass variations from GRACE satellite data. Earth Sci. Inform., 12, 389–404. DOI: 10.1007/s12145-018-0368-0.
  • [15] Forsberg, R., Sørensen, L. and Simonsen, S. (2017). Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surv. Geophys., 38, 89–104. DOI: 10.1007/s10712-016-9398-7.
  • [16] Godah, W., Szelachowska, M. and Krynski, J. (2015). On the selection of GRACE-based GGMs and a filtering method for estimating mass variations in the Earth system over Poland. Geoinf. Issues, 7(1), 5–14.
  • [17] Han, S.-C., Shum, C.K., Jekeli, C., Kuo, C.-Y., Wilson, C. and Seo, K.-W. (2005). Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys. J. Int., 163(1), 18–25. DOI: 10.1111/j.1365-246X.2005.02756.x.
  • [18] Han, S.-C., Sauber, J., Luthcke, S.B., Ji, C. and Pollitz, F.F. (2008). Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. J. Geophys. Res.: Solid Earth, 113, B11413. DOI: 10.1029/2008JB005705.
  • [19] Houborg, R., Rodell, M., Li, B., Reichle, R. and Zaitchik B. (2012). Drought indicators based on model assimilated GRACE terrestrial water storage observations. Water Resour. Res., 48, W07525. DOI: 10.1029/2011WR011291.
  • [20] Jekeli, C. (1981). Alternative methods to smooth the Earth’s gravity field. Technical Reports 327, Departmentof Geodetic Science and Surveying, Ohio State Univ., Columbus, OH.
  • [21] Kundu, S.N. (2016). GRACE, Climate Change and Future Needs: A Brief Review. J. Climatol Weather Forecasting, 4:179. DOI: 10.4172/2332-2594.1000179.
  • [22] Kusche J. (2007). Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geod., 81/11, 733-749. DOI: 10.1007/s00190-007-0143-3.
  • [23] Kusche, J., Schmidt, R., Petrovic, S. and Rietbroek, R. (2009). Decorrelated GRACE time-variable gravity solutions for science by GFZ, and their validation using a hydrological model. J. Geod., 83, 903–913.
  • [24] Loomis, B.D., Luthcke, S.B. and Sabaka, T.J. (2019). Regularization and error characterization of GRACE mascons. J. Geod., 93(9), 1381–1398. DOI: 10.1007/s00190-019-01252-y.
  • [25] Luthcke, S.B., Arendt, A.A., Rowlands, D.D, McCarthy, J.J. and Larsen C.F. (2008). Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J. Glaciol., 54, 767–77. DOI: 10.3189/0022143088787779933.
  • [26] Luthcke, S.B., Sabaka, T.J., Loomis, B.D., Arendt, A.A., McCarthy, J.J. and Camp, J. (2013). Antarctica, Greenland and Gulf of Alaska land ice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59(216), 613–631. DOI: 0.3189/2013JoG12J147.
  • [27] Muller, P.M. and Sjögren, W.L. (1968). Mascons: Lunar Mass Concentrations. Science, 161(3842), 680–684. DOI: 10.1126/science.161.3842.680.
  • [28] Nair, A.S. and Indu, J. (2018). Utilizing GRACE and GLDAS data for estimating groundwater storage variability over the Krishna Basin. ISPRS Ann. Photogramm., Remote Sens. Spatial Inf. Sci., IV-5, 129–136. DOI: 10.5194/isprs-annals-IV-5-129-2018.
  • [29] Peidou, A. and Pagiatakis, S. (2020). Stripe Mystery in GRACE Geopotential Models Revealed. Geophys. Res. Lett., vol. 47, issue 4, DOI: 10.1029/2019GL085497.
  • [30] Peltier, W.R. (2004). Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111–149. DOI: 10.1146/annurev. earth.32.082503.144359.
  • [31] Peltier, W.R., Argus, D.F. and Drummond, R. (2018). Comment on “An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al. J. Geophys. Res: Solid Earth, 123, 2019–2018. DOI: 10.1002/2016JB01384.
  • [32] Ray, R., Steinberg, D., Chao, B. and Cartwright, D. (1994). Diurnal and semidiurnal variations in the Earth’s rotation rate induced by ocean tides. Sci., 264, 830–832. DOI: 10.1126/science. 264.5160.830.
  • [33] Rexer, M., Pail R., Fecher T. and Meyer U. (2014). Time Variable Gravity: Contributions of GOCE Satellite Data to Monthly and Bi-monthly GRACE Gravity Field Estimates, Gravity, Geoid and Height Systems. Int. Assoc. Geod. Symp. Series, 141. DOI: 10.1007/978-3-319-10837-7_5.
  • [34] Rodell, M., Famiglietti, J.S., Wiese, D.N., Reager, J.T., Beaudoing, H.K., Landerer, F.W. and Lo, M.-H. (2018). Emerging trends in global freshwater availability. Nature, 557(7707), 651–659. DOI: 10.1038/s41586-018-0123-1.
  • [35] Rowlands, D.D., Luthcke, S.B., McCarthy, J.J., Klosko, S.M., Chinn, D.S., Lemoine, F.G., Boy, J.-P. and Sabaka, T.J. (2010). Global mass flux solutions from GRACE: a comparison of parameter estimation strategies – mass concentrations versus Stokes coefficients. J. Geophys. Res, 115:B01403. DOI: 10.1029/2009JB006546.
  • [36] Sabaka, T.J., Rowlands, D.D. Luthcke, S.B. and Boy J.P. (2010). Improving global mass flux solutions from GRACE through forward modeling and continuous time-correlation. J. Geophys. Res, DOI: 10.1029/2010JB007533.
  • [37] Sakumura, C. (2014). GRACE Technical Note 10 (CSR-GR-14-01) Gravity Recovery and Climate Experiment, Comparison of Degree 60 and Degree 96 Monthly Solutions, (May 5, 2014). Center for Space Research, The University of Texas at Austin.
  • [38] Sakumura, C., Bettadpur, S. and Bruinsma S. (2014). Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett., 41, 1389–1397. DOI: 10.1002/2013GL058632.
  • [39] Save, H., Bettadpur, S. and Tapley B.D. (2012). Reducing errors in the GRACE gravity solutions using regularization. J. Geod., 86(9), 695–711. DOI: 10.1007/s00190-012-0548-5.
  • [40] Save, H., Bettadpur, S. and Tapley B.D. (2016). High-resolution CSR GRACE RL05 mascons. J. Geophys. Res, 121, 7547–5769. DOI: 10.1002/2016JB013007.
  • [41] Scanlon, B.R., Zhang, Z., Save, H.,Wiese, D.N., Landerer, F.W., Long, D., Longuevergne, L. and Chen, J. (2016). Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res., 52(12), 9412–9429. DOI: 10.1002/2016wr019494.
  • [42] Scanlon, B.R., Zhang, Z., Save, H., Sun, A.Y., Müller S.H., van Beek, L.P.H., Wiese D.N., Wada, Y., Long, D., Reedy, R.C., Longuevergne, L., Döll, P. and Bierkens, M.F.P. (2018). Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci., 115(6), E1080–E1089. DOI: 10.1073/pnas.1704665115.
  • [43] Sun, Y., Riva, R. and Ditmar P. (2016). Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J. Geophys. Res: Solid Earth, 121. DOI: 10.1002/2016JB013073.
  • [44] Svehla, D. (2018). Geomatrical Theory of Satellite Orbits and Gravity Field. Doctoral Thesis accepted by the Technische Universität München, Munich, Germany. Section 28.7. Temporal Variations in the Orientation of the Tri-Axial Earth’s Ellipsoid and Low-Degree Sectorial Harmonics, 469–476.
  • [45] Tapley, B.D., Bettadpur, S.,Watkins, M. and Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31(9). DOI: 10.1029/2004gl019920.
  • [46] Wahr, J., Molenaar, M. and Bryan F. (1998). Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103, 30205–30229. DOI: 10.1029/98JB02844.
  • [47] Wahr, J., Swenson, S. and Velicogna, I. (2006). Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33, L06401. DOI: 10.1029/2005GL025305.
  • [48] Wang, L., Chen, Ch., Du, J. andWang T. (2017a). Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS. Hydrol. Earth Syst. Sci., 21, 2905–2922. DOI: 10.5194/hess-21-2905-2017.
  • [49] Wang, S.-Y., Chen, J.L., Wilson, C.R., Li, J. and Hu, X. (2017b). Reconciling GRACE and GPS estimates of long-term load deformation in southern Greenland. Geophys. J. Int, 212, 1302–1313. DOI: 10.1093/gji/ggx473.
  • [50] Watkins, M.M., Wiese, D.N., Yuan, D.-N., Boening, C. and Landerer, F.W. (2015). Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res: Solid Earth, 120(4), 2648–2671. DOI: 10.1002/2014jb011547.
  • [51] Wouters, B. and Schrama, E.J.O. (2007). Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics. Geophys. Res. Lett., 34, L23711. DOI: 10.1029/2007GL032098.
  • [52] Zhou, H., Luo, Z., Tangdamrongsub, N., Zhou, Z., He, L., Xu, Ch., Li, Q., and Wu, Y. (2018). Identifying Flood Events over the Poyang Lake Basin Using Multiple Satellite Remote Sensing Observations. Hydrological Models and In Situ Data. Remote Sens., 10(5), 713. DOI: 10.3390/rs10050713.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-182d3d4e-aa78-4f7d-bcd2-d8cf90943d74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.