PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanopory : budowa, właściwości, modele, zastosowania

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Nanopores : structure, properties, models, app lications
Języki publikacji
PL
Abstrakty
EN
Nanopores are small (1–100 nm diameter) holes/channels formed in biological membranes (Fig. 1) or fabricated in synthetic materials (Fig. 2). Permeation of ions and small molecules through nanopores is common in biological systems. The first experiments where nanopores were used as single-molecule sensors were performed in the 90s [1, 2]. The detection principle is based on a monitoring of an ionic current passing through a nanopore as an electric field is applied across the membrane. Electrically charged particles (e.g. DNA ) move in the electric field and block the ionic current as they pass through the nanopore. A sudden drop of the ionic current signals a single-molecule translocation event (Fig. 3–5). Nanopore sensors can give an information about the analyte: its size, structure and bonds stability. Today, a major topic of interest is the possibility of nanopore DNA sequencing. In this work we present an introduction to nanopore technology and to current research related to potential nanopore applications. First, we describe biological and synthetic nanopores: their structure and methods of fabrication. Next, different modes of nanopore experiments are presented. In the third section, we focus on theoretical models and simulations of nanopores. Finally, we present future perspectives for applications with particular reference to DNA sequencing.
Rocznik
Strony
277--302
Opis fizyczny
Bibliogr. 80 poz., wykr.
Twórcy
  • Zakład Chemii Fizycznej, Wydział Chemii, Uniwersytet im. Adama Mickiewicza ul. Grunwaldzka 6, 61-606 Poznań
autor
  • Zakład Chemii Fizycznej, Wydział Chemii, Uniwersytet im. Adama Mickiewicza ul. Grunwaldzka 6, 61-606 Poznań
Bibliografia
  • [1] J. Kasianowicz, E. Brandin, D. Branton, D. Deamer, Proc. Natl Acad. Sci. USA, 1996, 93, 13770.
  • [2] S. Bezrukov, I. Vodyanoy, V. Parsegian, Nature, 1994, 370, 279.
  • [3] W . Coulter, United States Patent 2656508, 1953.
  • [4] S. Iqbal, R. Bashir, Nanopores: sensing and fundamental biological interactions, Springer, 2011.
  • [5] B . Venkatesan, R. Bashir, Nat. Nanotechnol., 2011, 6, 615.
  • [6] C . Dekker, Nat. Nanotechnol., 2007, 2, 209.
  • [7] O . Hayden, K. Nielsch, Molecular- and Nano-Tubes, Springer, 2011.
  • [8] P. Hinterdorfer, A. van Oijen, Handbook of Single-Molecule Biophysics, Springer, 2009
  • [9] N . Modi, M. Winterhalter, U. Kleinekathofer, Nanoscale, 2012, 4, 6166.
  • [10] C . Maffeo, S. Bhattacharya, J. Yoo, D. Wells, A. Aksimentiev, Chem. Rev., 2012, 112, 6250.
  • [11] D . Wendell, P. Jing, J. Geng, V. Subramaniam, T. Lee, C. Montemagno, P. Guo, Nat. Nano, 2009, 4, 765.
  • [12] D . Jonas, I. Walev, T. Berger, M. Liebetrau, M. Palmer, S. Bhakdi, Infect. Immun., 1994, 62, 1304.
  • [13] S. Winters-Hilt, BMC Bioinformatics, 2007, 8, S9.
  • [14] V . Rao, M. Feiss, Annu. Rev. Genet., 2008, 42, 647.
  • [15] A . Simpson, P. Leiman, Y. Tao, Y. He, M. Badasso, P. Jardine, D. Anderson, M. Rossmann, Acta Cryst. D, 2001, 57, 1260.
  • [16] Z . Siwy, A. Fulinski, Am. J. Phys., 2004, 72, 567.
  • [17] C . Harrell, Z. Siwy, C. Martin, Small, 2006, 2, 194.
  • [18] Z . Siwy, D. Dobrev, R. Neumann, C. Trautmann, K. Voss, Appl. Phys. A Mater. Sci. Process., 2003, 76, 781.
  • [19] J. Li, D. Stein, C. McMullan, D. Branton, M. Aziz, J. Golovchenko, Nature, 2001, 412, 166.
  • [20] J. Heng, C. Ho, T. Kim, R. Timp, A. Aksimentiev, Y. Grinkova, S. Sligar, K. Schulten, G. Timp, Biophys. J., 2004, 87, 2905.
  • [21] S. Park, H. Peng, X. Ling, Small, 2007, 3, 116.
  • [22] M . Fischbein, M. Drndic, Appl. Phys. Lett., 2008, 93, 113107.
  • [23] C . Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. Fischbein, K. Venta, Z. Luo, A. Johnson, M. Drndic, Nano Lett., 2010, 10, 2915.
  • [24] G . Schneider, S. Kowalczyk, V. Calado, G. Pandraud, H. Zandbergen, L. Vandersypen, C. Dekker, Nano Lett., 2010, 10, 3163.
  • [25] S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J. Golovchenko, Nature, 2010, 467, 190.
  • [26] B . Venkatesan, B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov, R. Bashir, Adv. Mater., 2009, 21, 2771.
  • [27] R . Smeets, U. Keyser, D. Krapf, M. Wu, N. Dekker, C. Dekker, Nano Lett., 2006, 6, 89.
  • [28] C . Ho, R. Qiao, J. Heng, A. Chatterjee, R. Timp, N. Aluru, G. Timp, Proc. Natl. Acad. Sci. USA, 2005, 102, 10445.
  • [29] B . Venkatesan, A. Shah, J. Zuo, R. Bashir, Adv. Funct. Mater., 2010, 20, 1266.
  • [30] Y . He, D. Gillespie, D. Boda , I. Vlassiouk, R. Eisenberg, Z. Siwy, J. Am. Chem. Soc., 2009, 131, 5194.
  • [31] B . Hornblower, A. Coombs, R. Whitaker, A. Kolomeisky, S. Picone, A. Meller, M. Akeson, Nature Mater., 2007, 4, 315.
  • [32] A . Han, G. Schurmann, G. Mondin, R. Bitterli, N. Hegelbach, N. de Rooij, U. Staufer, Appl. Phys. Lett., 2006, 88, 093901.
  • [33] M . Wanunu, J. Sutin, B. McNally, A. Chow, A. Meller, Biophys. J., 2008, 108, 140475.
  • [34] M . Wanunu, W. Morrison, Y. Rabin, A. Grosberg, A. Meller, Nat. Nanotechnol., 2010, 5, 160.
  • [35] L . Movileanu, H. Bayley, Proc. Natl. Acad. Sci. USA, 2001, 98, 10137.
  • [36] O . Krasilnikov, C. Rodrigues, S. Bezrukov, Phys. Rev. Lett., 2006, 97, 018301.
  • [37] A . Han, M. Creus, G. Schurmann, V. Linder, T. Ward, N. de Rooij, U. Staufer, Anal. Chem., 2008, 80, 4651.
  • [38] D . Fologea, B. Ledden, D. McNabb, J. Li, Appl. Phys. Lett., 2007, 91, 053901-1.
  • [39] D . Talaga, J. Li, J. Am. Chem. Soc., 2009, 131, 9287.
  • [40] J. Uram, M. Mayer, Biosens. Bioelectron., 2007, 22, 1556.
  • [41] J. Li, M. Gershow, D. Stein, E. Brandin, J. Golovchenko, Nat. Mater., 2003, 2, 611.
  • [42] O . Dudko, J. Mathe, A. Meller, Methods in enzymology, 2010, 475, 565.
  • [43] A . Sauer-Budge, J. Nyamwanda, D. Lubensky, D. Branton, Phys. Rev. Lett., 2003, 90, 238101.
  • [44] Q. Zhao, G. Sigalov, V. Dimitrov, B. Dorvel, U. Mirsaidov, S. Sligar, A. Aksimentiev, G. Timp, Nano Lett., 2007, 7, 1680.
  • [45] B . Dorvel, G. Sigalov, Q. Zhao, J. Comer, V. Dimitrov, U. Mirsaidov, A. Aksimentiev, G. Timp, Nucl. Acids Res., 2009, 37, 4170.
  • [46] J. Mathe, A. Arinstein, Y. Rabin, A. Meller, Europhys. Lett., 2006, 73, 130.
  • [47] J. Comer, V. Dimitrov, Q. Zhao, G. Timp, A. Aksimentiev, Biophys. J., 2009, 96, 593.
  • [48] S. Chung, B. Corry, Soft Matter, 2005, 1, 417.
  • [49] S. Schink, S. Renner, K. Alim, V. Arnaut, F. Simmel, U. Gerland, Biophys. J., 2012, 102, 85.
  • [50] V . Viasnoff, N. Chiaruttini, J. Muzard, U. Bockelmann, J. Phys.: Condens. Matter, 2010, 22, 454122.
  • [51] W . Dyrka, A. Augousti, M. Kotulska, J. Comput. Chem., 2008, 29, 1876.
  • [52] N . Baker, D. Sept, S. Joseph, M. Holst, J. McCammon, Proc. Natl. Acad. Sci. USA, 2001, 98, 10037.
  • [53] W . Im, B. Roux, J. Mol. Biol., 2002, 322, 851.
  • [54] J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. Skeel, L. Kale, K. Schulten, J. Comput. Chem., 2005, 26, 1781.
  • [55] H . Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun., 1995, 91, 43.
  • [56] R . Zhou, B. Berne, Proc. Natl. Acad. Sci. USA, 2002, 99, 12777.
  • [57] M . Długosz, P. Zieliński, J. Trylska, J. Comput. Chem., 2011, 32, 2734.
  • [58] W . Im, S. Seefeld, B. Roux, Biophys. J., 2000, 79, 788.
  • [59] H . White, A. Bund, Langmuir, 2008, 24, 2212.
  • [60] I . Vlassiouk, S. Smirnov, Z. Siwy, Nano Lett., 2008, 8, 1978.
  • [61] D . Boda, M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, D. Gillespie, Phys. Rev. Lett., 2007, 98, 168102.
  • [62] S. Noskov, W. Im, B. Roux, Biophys. J., 2004, 87, 2299.
  • [63] A . Aksimentiev, K. Schulten, Biophys. J., 2005, 88, 3745.
  • [64] P. Bond, A. Guy, A. Heron, H. Bayley, S. Khalid, Biochemistry, 2011, 50, 3777.
  • [65] E . Cruz-Chu, A. Aksimentiev, K. Schulten, J. Phys. Chem. C, 2009, 113, 1850.
  • [66] E . Cruz-Chu, T. Ritz, Z. Siwy, K. Schulten, Faraday Discuss., 2009, 143, 47.
  • [67] J. Reiner, J. Kasianowicz, B. Nablo, J. Robertson, Proc. Natl. Acad. Sci. USA, 2010, 107, 12080.
  • [68] D . Makarov, Acc. Chem. Res., 2009, 42, 281.
  • [69] J. Comer, A. Aksimentiev, J. Phys. Chem. C, 2012, 116, 3376.
  • [70] D . Melnikov, A. Nikolaev, J. Leburton, M. Gracheva, Methods Mol. Biol., 2012, 870, 187.
  • [71] J. Clarke, H. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Nat. Nanotechnol., 2009, 4, 265.
  • [72] A . Storm, C. Storm, J. Chen, H. Zandbergen, J. Joanny, C. Dekker, Nano Lett., 2005, 5, 1193.
  • [73] G . Soni, A. Meller, Clin. Chem., 2007, 53, 1996.
  • [74] X. Ling, B. Bready, A. Pertsinidis, USPTO Patent Application No. 20070190542, 2006.
  • [75] J. Lagerqvist, M. Zwolak, M. Di Ventra, Nano Lett., 2006, 6, 779.
  • [76] M . Gracheva, A. Xiong, A. Aksimentiev, K. Schulten, G. Timp, J. Leburton, Nanotechnology, 2006, 17, 622.
  • [77] D . Fologea, J. Uplinger, B. Thomas, D. McNabb, J. Li, Nano Lett., 2005, 5, 1734.
  • [78] U. Keyser, B. Koeleman, S. van Dorp, Nat. Phys., 2006, 2, 473.
  • [79] H . Peng, X. Ling, Nanotechnology, 2009, 20, 185101.
  • [80] S. Polonsky, S. Rossnagel, G. Stolovitzky, Appl. Phys. Lett., 2007, 91, 153103.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18292c61-6677-4c81-af5e-7926fe7b51c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.