Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper aims to investigate the characteristics of concrete exposed to early frost damage and to examine the relationships between compressive strength and static and dynamic elastic moduli concerning its exposure to various frost environments. Frost initiation occurred at 1, 2, 3, 4, and 7 d, with duration of 12, 24, 36 h at -10℃. Furthermore, electric arc furnace slag coarse aggregate (EFG) was used as coarse aggregate to compare its influence on the properties of natural crushed coarse aggregate (NCA). Compressive strength and static elastic modulus were measured, and a nondestructive evaluation method approach was employed to evaluate the dynamic elastic modulus. The experimental results confirmed that a significant decrease in compressive strength when the concrete is exposed to frost damage in the early stages, particularly for 24 h in low w/b. However, the early age frost damage did not significantly alter the static and dynamic elastic moduli compared to the change observed in the compressive strength. Moreover, considering the impact of early frost damage on both compressive strength and elastic modulus, a new stochastic equation was proposed. This equation can utilize the results of nondestructive evaluation to estimate the compressive strength of early frost damaged concrete.
Czasopismo
Rocznik
Tom
Strony
art. e235, 1--14
Opis fizyczny
Bibliogr. 38 poz., il., tab., wykr.
Twórcy
autor
- Institute for Smart Infrastructure, Gangneung-Wonju National University, Republic of Korea
autor
- Korea Construction Quality Research Center, Nonhyeon-Ro, Gangnam-gu, Seoul, Republic of Korea
autor
- Department of Civil and Environmental Engineering, Gangneung-Wonju National University, Gangneung-si, Republic of Korea
Bibliografia
- 1. Mindess S, Young F, Darwin D. Concrete. 2nd ed. Prentice Hall: Englewood Clifs; 2003.
- 2. Neville AM. Properties of concrete. 4th edn. London: Longman; 1995.
- 3. Pacheco-Torgal F, Ding Y, Colangelo F, Tuladhar R, Koutamanis A. Advances in construction and demolition waste recycling: management, processing and environmental assessment. New York: Elsevier; 2020.
- 4. Boukhelkhal D, Guendouz M, Bourdot A, Cheriet H, Messaoudi K. Elaboration of bio-based building materials made from recycled olive core MRS. Energy Sustain. 2021;8(2):98-109. https:// doi.org/10.1557/s43581-021-00006-8.
- 5. Guendouz M, Boukhelkhal D, Bourdot A. Recycling of foor tile waste as fine aggregate in flowable sand concrete. Advances in green energies and materials technology. Singapore: Springer; 2021. p. 223-9. https://doi.org/10.1007/978-981-16-0378-5_30.
- 6. Guendouz M, Boukhelkhal D. Properties of dune sand concrete containing coffee waste. MATEC Web Conf. 2018. p. 149-01039. https://doi.org/10.1051/matecconf/201814901039.
- 7. Guendouz M, Debiebet F, Boukendakdji O, Kadri EH, Bentchikou M, Soualhi H. Use of plastic waste in sand concrete. J Mater Environ Sci. 2016;7(2):382-9. https://www.jmaterenvironsci.com/ Document/vol7/vol7_N2/41-JMES-Debieb-2016.pdf.
- 8. Choi SY, Yang EI. An experimental study on alkali silica reaction of concrete specimen using steel slag as aggregate. Appl Sci. 2020. https://doi.org/10.3390/app1019669910.3390/app10196699.
- 9. Qasrawi H. Hardened properties of green self-consolidating concrete made with steel slag coarse aggregates under hot conditions. ACI Mater J. 2020. https://doi.org/10.14359/51719072.
- 10. Choi SY, Kim IS, Yang EI. Comparison of drying shrinkage of concrete specimens recycled heavyweight waste glass and steel slag as aggregate. Materials (Basel). 2020;13:22–5084. https:// doi.org/10.3390/ma13225084.
- 11. Moon HY, Yoo JH, Kim SS. A fundamental study on the steel slag aggregate for concrete. Geosyst Eng. 2002;5(2):38-45. https://doi.org/10.1080/12269328.2002.10541186.
- 12. Lim HS, Lee HS. Experimental study on evaluation on volume stability of the electric arc furnace oxidizing slag aggregate. J. Korea Inst. Struct. Maint. Insp. 2017;21(2):78-86. https://doi. org/10.11112/jksmi.2017.21.2.078.
- 13. Liu D, Tu Y, Shi P, Sas G, Elfgren L. Mechanical and durability properties of concrete subjected to early-age freeze-thaw cycles. Mater Struct. 2021. https://doi.org/10.1617/ s11527-021-01802-x. 1
- 14. Kosior-Kazberuk M. Variations in fracture energy of concrete subjected to cyclic freezing and thawing. Arch Civil Mech Eng. 2013;13(2):254-9. https://doi.org/10.1016/j.acme.2013.01.002.
- 15. Yi ST, Pae SW, Kim JK. Minimum curing time prediction of early-age concrete to prevent frost damage. Constr Build Mater. 2011;25(3):1439-49. https://doi.org/10.1016/j.conbuildmat.2010. 09.021.
- 16. Choi HG, Zhang W, Hama Y. Method for determining early-age frost damage of concrete by using air-permeability index and influence of early-age frost damage on concrete durability. Constr Build Mater. 2017;153:630-9. https://doi.org/10.1016/j.conbuildmat.2017.07.140.
- 17. ACI Committee 306. Guide to Cold Weather Concreting (ACI 306R-16). Farmington Hills: American Concrete Institute; 2016.
- 18. Qin XC, Meng SP, Cao DF, Tu YM, Sabourova N, Grip N, Ohlsson U, Blanksvärd T, Sas G, Elfgren L. Evaluation of freeze-thaw damage on concrete material and prestressed concrete specimens. Constr Build Mater. 2016;125:892–904. https://doi.org/10.1016/j. conbuildmat.2016.08.098.
- 19. Lee WJ, Choi SY, Kim IS, Yang EI . Pore structures and mechanical properties of early frost damaged concrete using electric arc furnace slag as aggregate. J. Korea Inst. Struct. Maint. Insp. 2020;24(2):68-77. https://doi.org/10.11112/jksmi.2020.24.2.68.
- 20. Zhang P, Liu G, Pang C, Yan X, Qin H. Influence of pore structures on the frost resistance of concrete. Mag Concr Res. 2017;69(6):271-279. https://doi.org/10.1680/jmacr.15.00471.
- 21. Koh KT, Park CJ, Ryu GS, Park JJ, Kim DG, Lee JH. An experimental investigation on minimum compressive strength of early age concrete to prevent frost damage for nuclear power plant structures in cold climates. Nucl Eng Technol. 2013;45(3):393-400. https://doi.org/10.5516/NET.09.2012.046.
- 22. Chen J, Bharata R, Yin T, Wang Q, Wang H, Zhang T. Assessment of sulfate attack and freeze-thaw cycle damage of cement-based materials by a nonlinear acoustic technique. Mater Struct. 2016. https://doi.org/10.1617/s11527-016-0949-7.
- 23. Lin H, Takasu K, Suyama H, Koyamada H, Liu S. A study on properties, static and dynamic elastic modulus of recycled concrete under the influence of modified fly ash. Constr Build Mater. 2022;347:128585. https://doi.org/10.1016/j.conbuildmat.2022. 128585.
- 24. Kumar P. Concrete: microstructure, properties, and materials. New York: Forth MC Graw-Hill; 2014.
- 25. Thomaz WDA, Miyaji DY, Possan E. Comparative study of dynamic and static Young's modulus of concrete containing basaltic aggregates. Case Stud Constr Mater. 2021;15:e00645. https://doi.org/10.1016/j.cscm.2021.e00645.
- 26. Chi-Cong V, Weiss J, Plé O, Amitrano D. The potential impact of size effects on compressive strength for the estimation of the Young’s modulus of concrete. Mater Struct. 2021;54:1-20. https://doi.org/10.1617/s11527-021-01795-7.
- 27. ASTM C469. Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression. West Conshohocken: ASTM International; 2014.
- 28. Han SH, Kim JK. Effect of temperature and age on the relation ship between dynamic and static elastic modulus of concrete. Cem Concr Res. 2004;34(7):1219-27. https://doi.org/10.1016/j.cemconres.2003.12.011.
- 29. Bassim R, Issa M. Dynamic- and static-elastic moduli and strength properties of early-age portland cement concrete pavement mixtures. J Mater Civ Eng. 2020;32(5):04020066. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003089.
- 30. Noguchi T, Tomosawa F, Nemati KM, Chiaia BM, Fantilli AP. A practical equation for elastic modulus of concrete. ACI Struct J. 2009;106(5):690-6.
- 31. ASTM C215. Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens. West Conshohocken: ASTM International; 2019.
- 32. ASTM C597. Standard test method for pulse velocity through concrete. West Conshohocken: ASTM International; 2016.
- 33. Stefaniuk D, Niewiadomski P, Musiał M, Łydżba D. Elastic properties of self-compacting concrete modifed with nanoparticles: multiscale approach. Arch Civil Mech Eng. 2019;19(4):1150-62. https://doi.org/10.1016/j.acme.2019.06.006.
- 34. Sandor P. Verification of relationships between mechanical properties of concrete-like materials. Matériaux et Constr. 1975;8:183-91.
- 35. ASTM C39. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken: ASTM International; 2020.
- 36. Hassan AMT, Jones SW. Non-destructive testing of ultra high performance fibre reinforced concrete (UHPFRC): a feasibility study for using ultrasonic and resonant frequency testing techniques. Constr Build Mater. 2012;35:361-7. https://doi.org/10. 1016/j.conbuildmat.2012.04.047.
- 37. Lee BJ, Kee SH, Oh TK, Kim YY. Evaluating the dynamic elastic modulus of concrete using shear-wave velocity measurements. Adv Mater Sci Eng. 2017;1:13. https://doi.org/10.1155/2017/ 1651753.
- 38. Yang C, Gupta R. Prediction of the compressive strength from resonant frequency for low-calcium fy ash-based geopolymer concrete. J Mater Civ Eng. 2018. https://doi.org/10.1061/(asce) mt.1943-5533.0002228.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18282531-7a78-40cd-b7ec-a34b8bee0b8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.