JEE Journal of Ecological Engineering

Volume 21, Issue 6, August 2020, pages 191–200 https://doi.org/10.12911/22998993/123830

Spatial Diversification of Situation of the Organic Farming in the Polish Voivodeships in the Years 2010–2018

Konrad Podawca^{1*}, Norbert Dąbkowski²

- ¹ Institute of Environmental Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- ² Institute of Civil Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- * Corresponding author's e-mail: konrad_podawca@sggw.pl

ABSTRACT

The paper raises the problem of changes in situation of the organic farming in Poland. A set of features and indexes characterizing development or recession of the organic farms in individual voivodeships has been worked out. The authors used data for the years 2010–2018, made available in the Local Data Bank, and reports on the state of the organic farms in Poland. Quantitative and areal changes have been presented, concerning firstly the organic farms in relation to all farms as well as the agricultural area and, secondly, certified farms in relation to the organic farms. Using the arithmetic mean of synthetic indexes, the evaluation results have been compared to the synthetic index of usefulness for organic production which was worked out in the Institute of Soil Science and Plant Cultivation (IUNG) in Pulawy. A diversification of the voivodeships has been presented in terms of recession or development of the organic farms. Regions have been also selected where the negative trend of the phenomenon is opposite to that indicated by advantageous conditions for the organic farming. Examples of such voivodeships are Silesian, Holy Cross or Lower Silesian. The performed analysis proves that an interest in the organic farming in Poland significantly decreased in recent years. One can find the recession of the organic farming in 10 voivodeships, even at the level of 30–65% in the Silesian, Holy Cross, Lesser Poland and Subcarpathia. The satisfactory development level of the organic farms through the recent 9 years has been stated only in three voivodeships: Lodz Province, Podlaskie, Warmian-Masurian.

Keywords: organic farming, development, recession, organic farm, voivodeship

INTRODUCTION

The origins of the organic farming date back to 1920s. In that time the Polish workers knew about the alternative methods of farming owing to the count and countess von Keyserling who introduced in their farm a biodynamic method developed by Dr Steiner [Duda-Krynicka and Jaskólecki 2010]. However, 1984 is recognized as the beginning of the eco-agricultural movement in Poland. From the very onset, it was such form of farming which had to benefit not only farmers but, first of all, consumers and the environment. Thus, the development of farms promoting ecological cultivation and breeding became the subject of research [Zegar 2009].

In the source literature, the items presenting diversification in the development pace of the organic farms in various regions of the world, Europe and Poland can be found [Runowski 2009, Ligenzowska 2014, Drabarczyk and Wrzesińska-Kowal 2015, Golik and Żmija 2017]. Of course, it is affected, i.a. by the environmental conditions, natural quality of the agricultural space as well as financial aspects of the organic farming and market of ecological products [Kowalska 2010]. The majority of authors limit themselves to the quantitative characteristics [Komorowska 2007, Drabarczyk and Wrzesińska-Kowal 2015, Golik and Żmija 2017, Raport...] and tries to analyze it with the use of graphical methods (e.g. Lorentz's concentration curve) or analytical ones (Gini's

coefficient) [Makowska et al. 2015]. It must be emphasized as well that many works concern the situation in Poland [Komorowska 2007]. The spatial characteristics are presented mostly in relation to the voivodeships, rarely in relation to smaller units, as counties [Kacprzak and Kołodziejczak 2011, Dąbkowski and Podawca 2017].

Till 2013, one can distinguish three periods in the development of the organic farming in Poland. Till 1999, when a financial support of that farming system did not exist, there were few of such farms - only 555, most of which were localized in the Holy Cross, Lublin and Mazovia voivodeships, while the least in the Kuyavia-Pomerania, Subcarpathia and Opole [Komorowska 2007]. When the payments for ecological areas were introduced in 2001 and the government started to refund the certification costs from the state budget in 2000-2004, the popularity of that form of farming increased [Łuczka-Bakuła 2013]. In 2004, an almost 8-fold increase of the organic farms related to 1999 (from 555 to 3760) was observed in Poland. In this period, the most organic farms were registered in the Lesser Poland, Holy Cross and Mazovia voivodeships. In 2013, however, the total number of the ecological farms in Poland amounted 26 598, what means a 7-fold increase in the number observed in 2004. Most farms were placed in the Warmia-Masuria, Podlasie and Mazovia voivodeships [Makowska 2015].

OBJECTIVES OF THE ANALYSIS

The main objective of the analysis was a presentation of the diversification of parameters characterizing the organic farming in individual voivodeships. The state of the organic farming has been described by a set of indices which constitutes a technique for assessing the development level of this method of agriculture in the voivodeships. It was assumed that the timespan of the analysis are the years 2010-2018.

The complementary objectives were:

- presentation of diversification of amount of the organic farms in each voivodeship,
- presentation of diversification of the voivodeships in terms of the area of organic agriculture.

Apart of the quantitative comparison, a time comparison has been worked out. The presented material allows observing the change trends occurring year by year in the individual voivodeships in relation to each parameter characterizing the organic farming.

METHODS

The following data were assumed to characterize the organic farms in Poland:

- amount of the organic farms L_{of} [items],
- amount of the certified organic farms L_{cof} [items],
- total amount of farms L_{af} [items],
- area of the organic farms A_{of} [ha],
- area of the certified organic farms A_{cof} [ha],
- total area of farms A_{af} [ha].

The following data were assumed with order to evaluate the diversification in the organic farming in terms of the area of farms as well as to compare the administrative units in these terms:

- share of the organic farms in the set of all farms C_{of} [-],
- share of the certified organic farms in the set of the organic farms C_{cof} [-],
- share of the area of the organic farms in the total agricultural area C_{aof} [-],
- share of the area of the certified organic farms in the area of the organic farms C_{acof} [ha].

The changes of the following data within the 9-year period 2010-2018, in the annual time modules, were used to present the development dynamics of the organic farming:

- increase or decrease of the area of the organic farms ΔA_{aof} [ha],
- increase or decrease of the amount of the organic farms ΔL_{of} [items],
- increase or decrease of the area of the certified organic farms ΔA_{acof} [ha],
- increase or decrease of the amount of the certified organic farms ΔL_{cof} [items].

The following indices, related both to the amount and the area of the organic farms, were used to evaluate a development level in the organic farming within the period 2010-2018:

$$\begin{split} W_{devof} &= (L_{ofmax} - L_{of2010})/L_{ofmax} \ [-]; \\ W_{recof} &= (L_{ofmax} - L_{of2018})/L_{ofmax} \ [-]; \\ W_{devaof} &= (A_{ofmax} - A_{of2010})/A_{ofmax} \ [-]; \\ W_{recaof} &= (A_{ofmax} - A_{of2018})/A_{ofmax} \ [-]. \end{split}$$

It was caused by a fact that in each case one can determine a maximum of the amount of the organic farms and, usually, two periods – development and recession of the organic farms. In order to depict synthetically the diversification of the voivodeships in terms of the situation in the organic farming, synthetic indices were used, which constitute a difference between the periods of development and recession:

$$W_{synt1} = W_{devof} - W_{recof}[-];$$

$$W_{synt2} = W_{devaof} - W_{recaof}[-].$$

The analysis and interpretation of the investigation results were followed according to the stages below:

• filtration of the data gathered in the Local Data Bank (BDL) with use of the features contained in the category Agriculture, forestry and hunting, the subgroup Organic farms and Farms, in terms of areal groups of agricultural lands;

- data aggregation for individual subsets;
- dynamic data analysis (in one-year periods) with presentation of a trend of the changes.

Compilation of the numerical data in spatial terms has been worked out with use of the data from the BDL and the ArcGis software.

CHARACTERISTICS OF DEVELOPMENT OF ORGANIC FARMS

The data and features concerning the organic and certified farms are gathered in Table 1.

Table 1. Data and features concerning certified farms along with the change trend for the voivodeships in the years 2010-2018 (by authors)

Voi.	Year	L _f	A_{af}	L_{of}	ΔL_{of}	A _{of}	ΔA_{of}	L _{cof}	ΔL_{cof}	A _{acof}	ΔA_{acof}	C _{of}	C _{cof}	C_{aof}	Cacof
	2010	61834	995916	1227	95	39703	5844	778	136	25476	4555	0.0198	0.634	0.0399	0.6417
	2011		1072649	1322	-10	45547	-1243	914	127	30031	4392		0.691	0.0425	0.6593
SIA KIE)	2012	61099	1084896	1312	-123	44304	-6849	1041	-32	34423	-3451	0.0215	0.793	0.0408	0.7770
ASI ASI	2013	59544	976338	1189	-143	37455	-450	1009	-55	30972	2622	0.0200	0.849	0.0384	0.8269
R S DŚL	2014		994492	1046	_197	37005	-5744	954	_181	33594	-5072		0.912	0.0372	0.9078
LNG	2015		958588	849	-36	31261	-2061	773	-116	27622	-3768		0.910	0.0326	0.8836
BC	2016	55993	950243	813	-30	29200	4050	657	-110	23854	-0700	0.0145	0.808	0.0307	0.8169
	2017		964719	741	-72	27542	-1058	573	-84	21605	-2249		0.773	0.0285	0.7844
	2018		898865	713	-28	27357	-185	578	5	21002	-603		0.811	0.0304	0.7677
<u> </u>	2010	68148	1233609	327	44	7688	688	232	27	6150	345	0.0048	0.709	0.0062	0.7999
SKIE N	2011		1227665	371	19	8376	437	259	38	6495	461		0.698	0.0068	0.7754
2AN DRS	2012	64770	1132881	390	25	8813	2330	297	44	6956	1969	0.0060	0.762	0.0078	0.7893
ME	2013	65115	1140071	415	_14	11152	421	341	20	8925	1321	0.0064	0.822	0.0098	0.8003
D d d	2014		1149709	401	_38	11573	-028	361	_31	10246	-751		0.900	0.0101	0.8853
SKC-A-	2015		1147637	363	107	10645	1382	330	-38	9495	-17/2		0.909	0.0093	0.8920
AN:	2016	63830	1107332	470	-51	9263		292	-32	7753	-1742	0.0074	0.621	0.0084	0.8370
Υ Ω	2017		1147008	419	-24	8331	-352	260	-02	6198	-1000		0.621	0.0073	0.7440
L X	2018		1183952	395		7655	-676	285	25	5781	-417		0.722	0.0065	0.7552
	2010	188266	1599705	1962	103	34855	-18	1386	83	23539	1178	0.0104	0.706	0.0218	0.6753
	2011		1650534	2065	100	34837	2620	1469	111	24717	3447		0.711	0.0211	0.7095
NC I	2012	177525	1614948	2174	-45	37466	3353	1613	98	28164	3187	0.0122	0.742	0.0232	0.7517
NIN NIN	2013	178135	1584383	2129	_15/	40819	-2352	1711	65	31351	1271	0.0120	0.804	0.0258	0.7680
PR(2014		1584924	1975	-150	38467	-2002	1776	_133	32622	-3036		0.899	0.0243	0.8481
N N	2015		1643830	1825	155	34052	-2709	1643	-156	29586	-4399		0.900	0.0207	0.8688
UBI	2016	179994	1628626	1980	-76	31343	-2342	1487	-100	25187	-2249	0.0110	0.751	0.0192	0.8036
	2017		1647054	1904	-10	29001	-20+2	1387	-100	22938	-2240		0.728	0.0176	0.7909
	2018		1614774	1948	44	28428	-573	1466	79	22682	-256		0.753	0.0176	0.7979
	2010	22147	490418	833	248	35797	8462	417	143	19297	4570	0.0376	0.501	0.0730	0.5391
ш	2011		521539	1081	275	44259	8322	560	212	23867	7743		0.518	0.0849	0.5393
S C	2012	22354	515376	1356	66	52581	2111	772	151	31610	3800	0.0607	0.569	0.1020	0.6012
N N	2013	21256	456736	1422	-52	54692	_1302	923	210	35500	801/	0.0669	0.649	0.1197	0.6491
PR	2014		468979	1370	-168	53300	-6957	1133	-77	44414	-5075		0.827	0.1137	0.8333
JSZ UE	2015		419363	1202	-54	46343	-3108	1056	-136	39339	-6696		0.879	0.1105	0.8489
UBL	2016	20236	423777	1148	-200	43235	-5312	920	-214	32643	-5320	0.0567	0.801	0.1020	0.7550
	2017		414919	948	-200	37923	-0012	706	-214	27323	-0020		0.745	0.0914	0.7205
	2018		408942	877	-71	37174	-749	646	-60	26651	-672		0.737	0.0909	0.7169

Table 1. cont.

Voi.	Year	L _f	A_{af}	L _{of}	ΔL_{of}	A _{of}	ΔA_{of}	L _{cof}	ΔL_{cof}	A _{acof}	ΔA_{acof}	C _{of}	C _{cof}	C _{aof}	C_{acof}
	2010	130565	1120552	420	58	7671	1075	234	64	3681	1036	0.0032	0.557	0.0068	0.4799
	2011		1115300	478	40	8746	1162	298	12	4717	881		0.623	0.0078	0.5393
Ш С	2012	130241	1113600	518	10	9908	/3/	340	56	5598	1640	0.0040	0.656	0.0089	0.5650
NN (E)	2013	128309	1112531	528	_20	10342	887	396	27	7238	1515	0.0041	0.750	0.0093	0.6999
DZ Z	2014		1100298	508	-20	11229	-1071	423	-13	8753	-316		0.833	0.0102	0.7795
ΓÓ Έ	2015		1103135	478	10	10158	-172	410	-13	8437	-616		0.858	0.0092	0.8306
LO	2016	124032	1096017	497	_20	9986	-726	373	_10	7791	-360	0.0040	0.751	0.0091	0.7802
	2017		1160405	477	-20	9260	-120	354	-13	7431	-500		0.742	0.0080	0.8025
	2018		1134572	491	14	8905	-355	371	17	6955	-476		0.756	0.0078	0.7810
	2010	153771	744222	2156	-18	21968	-572	1729	179	17835	839	0.0140	0.802	0.0295	0.8119
	2011		811118	2138	-35	21396	-346	1908	3	18674	216		0.892	0.0264	0.8728
ЧШ	2012	152176	710093	2103	-265	21050	-4045	1911	-215	18890	-3682	0.0138	0.909	0.0296	0.8974
SK	2013	142874	685394	1838	-460	17005	-1476	1696	-380	15208	_800	0.0129	0.923	0.0248	0.8943
PO	2014		649894	1378	250	15529	2553	1307	-303	14408	2710		0.948	0.0239	0.9278
ALO SEI	2015		663461	1128	-250	12976	-2000	1070	125	11689	1050		0.949	0.0196	0.9008
LES (M	2016	139923	678802	1093	150	12364	1673	945	1/0	10639	1364	0.0078	0.865	0.0182	0.8605
	2017		687629	934	-139	10691	-1073	805	-140	9275	-1304		0.862	0.0155	0.8676
	2018		669068	770	-164	8844	-1847	674	-131	7548	-1727		0.875	0.0132	0.8535
	2010	228821	2266491	1935	205	46229	3871	1232	177	25026	6076	0.0085	0.637	0.0204	0.5413
	2011		1328186	2140	222	50100	5704	1409	246	31102	0110		0.658	0.0377	0.6208
Û	2012	234503	2339276	2373	235	55804	76/1	1655	240	39212	6777	0.0101	0.697	0.0239	0.7027
A N	2013	212159	2207883	2609	230	63445	2001	1946	70	45989	4407	0.0123	0.746	0.0287	0.7249
NIE SO	2014		2160781	2374	-200	60354	-3091	2024	164	50486	5650		0.853	0.0279	0.8365
MA	2015		2248532	2147	270	53790	4072	1860	-104	44827	-5059		0.866	0.0239	0.8334
N)	2016	212917	2211447	2426	219	49517	-4273	1691	19/	38734	1851	0.0114	0.697	0.0224	0.7822
	2017		2244490	2215	-211	44348	-5109	1507	-104	33883	-4001		0.680	0.0198	0.7640
	2018		2474522	2284	69	42049	-2299	1593	86	32064	-1819		0.697	0.0170	0.7625
	2010	28437	538712	79	7	3180	-477	49	6	2190	-603	0.0028	0.620	0.0059	0.6887
	2011		555283	86		2703	227	55	11	1587	220		0.640	0.0049	0.5871
Щ С Ц	2012	26832	543306	90	2	2930	613	66	9	1816	762	0.0034	0.733	0.0054	0.6198
NIN VIN	2013	26753	571488	88	_13	3543	-237	74	-5	2578	_07	0.0033	0.841	0.0062	0.7276
PR(2014		510019	75	8	3306	-264	69	-11	2481	-247		0.920	0.0065	0.7505
Р Б Г Г	2015		520303	67	1	3042	17/	58	_1	2234	110		0.866	0.0058	0.7344
OPC)	2016	26919	533060	68		3216	-426	57	_0	2353	-164	0.0025	0.838	0.0060	0.7317
Ŭ	2017		529825	57	-11	2790	-420	48	-3	2189	-104		0.842	0.0053	0.7846
	2018		524200	61	4	3554	764	50	2	2501	312		0.820	0.0068	0.7037
	2010	140465	723600	2091	-46	31868	491	1620	104	24868	1467	0.0149	0.775	0.0440	0.7803
	2011		772538	2045	-105	32359	-1978	1724	-18	26335	-26		0.843	0.0419	0.8138
¥ E	2012	134024	748495	1940	-190	30381	-875	1706	-133	26309	-429	0.0145	0.879	0.0406	0.8660
ACP	2013	132823	686671	1750	-275	29506	-5996	1573	-208	25880	-5213	0.0132	0.899	0.0430	0.8771
ARP	2014		678969	1475	-214	23510	-6854	1365	-234	20667	-6176		0.925	0.0346	0.8791
ВС	2015		670218	1261	_9	16656	-1170	1131	-112	14491	-1585		0.897	0.0249	0.8700
SC BC	2016	132851	686614	1252	-58	15486	-137	1019	-107	12906	-381	0.0094	0.814	0.0226	0.8334
	2017		683730	1194	-00	15349	-107	912	-107	12525	-001		0.764	0.0224	0.8160
	2018		645746	1131	-63	13630	-1719	927	15	11435	-1090		0.820	0.0211	0.8390
	2010	84136	1260925	2033	407	42917	9149	1038	379	18890	11251	0.0242	0.511	0.0340	0.4402
Щ	2011		1271067	2440	484	52066	4301	1417	494	30141	9032		0.581	0.0410	0.5789
JINC ()	2012	80873	1286687	2924	483	56367	7181	1911	324	39173	5635	0.0362	0.654	0.0438	0.6950
SKIE SKIE	2013	79083	1256787	3407	25	63548	1349	2235	345	44808	6492	0.0431	0.656	0.0506	0.7051
ILAS	2014		1264636	3432	-159	64897	-8369	2580	235	51300	-2747		0.752	0.0513	0.7905
ASI	2015		1243342	3273	164	56528	-1360	2815	-87	48553	-2480		0.860	0.0455	0.8589
	2016	81181	1277656	3437	-226	55168	-1617	2728	-152	46073	-1058	0.0423	0.794	0.0432	0.8351
ď	2017		1263799	3211		53551		2576	102	45015			0.802	0.0424	0.8406
	2018		1235832	2989	-222	51608	-1943	2420	-156	41789	-3226		0.810	0.0418	0.8097

Table 1. cont.

		,													
Voi.	Year	L _f	A_{af}	L _{of}	ΔL _{of}	A _{of}	ΔA_{of}	L	ΔL _{cof}	A _{acof}	ΔA_{acof}	C _{of}	C _{cof}	C _{aof}	C _{acof}
	2010	41136	859654	648	115	22554	4803	348	112	12048	4355	0.0158	0.537	0.0262	0.5342
	2011		895869	763	101	27357	2050	460	144	16403	4000		0.603	0.0305	0.5996
1.0	2012	40035	907976	894	131	30615	3258	601	141	21223	4820	0.0223	0.672	0.0337	0.6932
NIA KIE	2013	39956	843240	893	-1	28721	-1894	645	44	21146	-//	0.0223	0.722	0.0341	0.7363
ERA	2014		822341	847	-40	29282	561	708	63	25184	4038		0.836	0.0356	0.8601
MO	2015		850604	737	-110	24866	-4410	642	-00	21988	-3196		0.871	0.0292	0.8843
Ч (2016	39049	814774	679	-58	23328	-1538	568	-74	18766	-3222	0.0174	0.837	0.0286	0.8044
	2017		843223	609	-70	22419	-909	497	-/1	16498	-2268		0.816	0.0266	0.7359
	2018		833793	540	-69	19974	-2445	441	-56	14675	-1823		0.817	0.0240	0.7347
	2010	64745	447509	228	10	5739	1048	153	20	3451	801	0.0035	0.671	0.0128	0.6013
	2011		502643	238		6787	000	173	40	4252	4005		0.727	0.0135	0.6265
	2012	64803	436500	236	-2	7125	338	192	19	5537	1285	0.0036	0.814	0.0163	0.7771
ĕ≘	2013	58981	434688	242	0	7220	95	205	13	5661	124	0.0041	0.847	0.0166	0.7841
ESI SK	2014		412525	230	-12	7788	568	207	2	6918	1257		0.900	0.0189	0.8883
SIL SIL	2015		400909	201	-29	6638	-1150	173	-34	5822	-1096		0.861	0.0166	0.8771
	2016	54503	415249	180	-21	5324	-1314	151	-22	4402	-1420	0.0033	0.839	0.0128	0.8268
	2017		4206006	162	-18	3726	-1598	132	-19	2973	-1429		0.815	0.0009	0.7979
	2018		422867	148	-14	2951	-775	118	-14	2301	-672		0.797	0.0070	0.7797
	2010	96672	598764	1243	53	13123	1178	928	81	9270	1521	0.0129	0.747	0.0219	0.7064
	2011		604202	1296		14301	1170	1009	01	10791	1021		0.779	0.0237	0.7546
XIE)	2012	92654	587411	1288	-8	14551	250	1077	68	11409	618	0.0139	0.836	0.0248	0.7841
SSC VSI	2013	90241	575996	1207	-81	15122	571	1081	4	12728	1319	0.0134	0.896	0.0263	0.8417
CR(KRZ	2014		560124	992	-215	13038	-2084	933	-148	11510	-1218		0.941	0.0233	0.8828
	2015		560702	853	-139	11598	-1440	807	-126	10597	-913		0.946	0.0207	0.9137
ME	2016	85308	562031	834	-19	10739	-859	707	-100	9341	-1256	0.0098	0.848	0.0191	0.8698
(ý	2017		564757	740	-94	9970	-769	614	-93	8343	-998		0.830	0.0177	0.8368
	2018		540019	680	-60	9087	-883	575	-39	7618	-725		0.846	0.0168	0.8383
<u> </u>	2010	43788	1144844	2279	754	75242	02024	989	440	34130	17450	0.0520	0.434	0.0657	0.4536
Ë	2011		1186800	3033	/ 54	98473	23231	1438	449	51580	17450		0 474	0.0830	0.5238
RS	2012	43995	1158564	3793	760	112945	14472	2160	722	67615	16035	0.0862	0.569	0.0975	0.5987
¶ZU	2013	41928	1143952	4235	442	116199	3254	2606	446	74103	6488	0 1010	0.615	0 1016	0.6377
-W-	2014		1120247	4234	-1	117097	898	3196	590	90131	16028		0 755	0 1045	0 7697
SKC	2015		1096060	4041	-193	112768	-4329	3477	281	92949	2818		0.860	0 1029	0.8242
MIŃ	2016	43165	1130329	4142	101	108667	-4101	3235	-242	85732	-7217	0.0960	0.781	0.0961	0 7889
ARI	2017		1053008	3745	-397	107067	-1600	2870	-365	80817	-4915		0.766	0 1017	0 7548
5	2018		1075762	3393	-352	104574	-2493	2719	-151	76076	-4741		0.801	0.0972	0.7275
	2010	125692	1952281	748	140	32513	5001	456	70	20755	2640	0 0060	0.610	0.0167	0.6384
	2011		1968065	888	140	38434	5921	534	/0	24395	3040		0.601	0.0195	0.6347
ЧŰ	2012	123228	1974634	974	86	41479	3045	651	117	29187	4792	0.0079	0.668	0.0210	0 7037
SKI	2013	122788	1920099	1006	32	41617	138	762	111	32367	3180	0.0082	0.757	0.0217	0.7777
2 POL	2014		1937521	966	-40	42071	454	859	97	37478	5111		0.889	0.0217	0.8908
KO	2014		1881413	809	-157	34523	-7548	725	-134	30599	-6879		0.896	0.0217	0.8863
REA	2016	121157	1823856	843	34	20171	-5352	502	-133	23450	-7140	0.0070	0 702	0.0160	0.8042
<u>5</u> 2	2010	121107	1025030	736	-107	25380	-3782	/83	-109	10663	-3796	0.0070	0.702	0.0132	0.0042
	2012		1878106	727	-9	25003	605	511	28	18501	-1162		0.000	0.0138	0 7117
	2010	30525	1008609	2373	0000	98023	04757	1312	005	61491	0.450	0.0777	0.553	0.0072	0.6273
Ê	2011		953611	3065	692	110780	21/57	1607	295	70050	9459		0.524	0 1256	0.50273
AIA 3SK	2012	28739	949160	3579	514	135367	15587	2104	587	89966	19016	0 1245	0.613	0.1200	0.6646
RAN	2012	20062	801230	36/0	61	120585	-5782	2660	475	08518	8552	0.1240	0.733	0.1454	0.7603
PO	2013	23002	801859	3526	-114	12005	-129	2009	456	115707	17189	0.1232	0.735	0.1459	0.7003
NIO	2014		880560	30420	-483	11/1007	-14569	20120	-282	102600	-12009		0.000	0.1402	0.0930
EST	2010	20646	806363	2572	-470	100570	-14317	2043	-577	81262	-22435	0.0869	0.934	0.1292	0.9020
ACH V	2010	23040	050303	2010	-408	07600	-12950	1747	-519	66560	-14695	0.0000	0.001	0.1122	0.0000
Ź	2017		004023	2000	-105	02000	5272	1/4/	-194	65005	-583		0.754	0.1013	0.7597
1	2018		014354	2000	1	92892	-	1553		00982			0.754	0.1062	0.7103

Looking at the data, one can observe that the highest amount of the organic farms corresponds to the years 2012-2013. This situation concerns the following voivodeships: Lublin, Lubusz, Mazovia, Opole, Pomerania, Silesia, Varmia-Masuria, Greater Poland and West Pomerania. The crisis in the development of the organic farms began earlier in the Lower Silesia, Lesser Poland, Subcarpathia and Holy Cross voivodeships. Only in the Kuyavia-Pomerania and Podlasie voivodeships this decline started later, i.e. in 2016. It can be observed that in most cases the decrease in the amount of the organic farms has been continuous for several years. Only in the Mazovia, Lodz and Lublin voivodeships it fluctuates i.e. in one vear, their amount increases and in the next one it decreases.

It is also visible that the share of the organic farms in the set of all farms is not high. In five cases, i.e. Greater Poland, Silesia, Opole, Lodz and Kuyavia-Pomerania voivodeships, it does not even reach 1%. In most voivodeships – in eight of them (Lower Silesia, Lublin, Lesser Poland, Mazovia, Subcarpathia, Holy Cross, Pomerania, West Pomerania) – it is at a level of $1 \div 2\%$. Only in three cases, one can acknowledge that the form of organic farming constitutes a significant contribution to the agriculture: in the Varmia-Masuria, West Pomerania and Podlasie voivodeships.

The shares of the agricultural areas cultivated with ecological methods in relation to the overall agricultural area follow a similar pattern. These shares are only slightly higher than the shares concerning the amount of the farms. Thus, it can be concluded that an average organic farm is greater than an average regular farm in the given voivodeship.

A positive aspect of the organic farming development is the share of the certified farms and their areas in the set of all ecological farms. Regardless the voivodeship, this share falls within the range of 70–90%. It proves an awareness of the organic farmers and need for the formalization of their activity and products.

RESULTS

It results clearly from the analysis that the recession in the situation in the organic farms is oncoming. In various voivodeships, this recession began in a different period, but mostly it was the year 2013. However, not only the very phenomenon of decrease in the number of the organic farms but also the intensity of this process in the years 2010-2018 must be taken into consideration (Fig. 1, Fig. 2). The indices presented in Table 2 show the dynamics of increase and decrease of the amount of the organic farms as well as the area covered by the organic farming.

The applied methodology allows showing clearly that, in most voivodeships, the recession indicators in the organic farming predominate the previous development indicators. The worst situation is observed in the Lesser Poland and Subcarpathia voivodeships where

 Table 2. Indices of development and recession and synthetic indices of the organic farms in the voivodeships in the years 2010-2018

No.	Voivoship	W _{devof}	W _{recof}	W _{devaof}	W _{recaof}	W _{synt1}	W _{synt2}	W _{synt3}
1	Lower Silesia	0.072	0.461	0.128	0.399	-0.389	-0.271	-0.330
2	Kuyavia-Pomerania	0.304	0.160	0.336	0.339	0.145	-0.003	0.071
3	Lublin	0.098	0.104	0.146	0.304	-0.006	-0.157	-0.082
4	Lubusz	0.414	0.383	0.345	0.320	0.031	0.025	0.028
5	Lodz	0.205	0.070	0.317	0.207	0.134	0.110	0.122
6	Lesser Poland	0.000	0.643	0.000	0.597	-0.643	-0.597	-0.620
7	Masovia	0.258	0.125	0.271	0.337	0.134	-0.066	0.034
8	Opole	0.122	0.322	0.102	0.003	-0.200	0.100	-0.050
9	Subcarpathia	0.000	0.459	0.015	0.579	-0.459	-0.564	-0.512
10	Podlasie	0.408	0.130	0.339	0.205	0.278	0.134	0.206
11	Pomerania	0.275	0.396	0.263	0.348	-0.121	-0.084	-0.103
12	Silesia	0.058	0.388	0.263	0.621	-0.331	-0.358	-0.345
13	Holy Cross	0.041	0.475	0.132	0.399	-0.434	-0.267	-0.351
14	Warmia-Masuria	0.462	0.199	0.357	0.107	0.263	0.250	0.257
15	Greater Poland	0.256	0.277	0.227	0.382	-0.021	-0.155	-0.088
16	West Pomerania	0.348	0.434	0.276	0.314	-0.086	-0.038	-0.062

Fig. 1. Diversification of the voivodeships in terms of the changes in the amount of the organic farms in the years 2010-2018 (by authors)

Fig. 2. Diversification of the voivodeships in terms of the changes in the area of the organic farms in the years 2010-2018 (by authors)

the amount of the organic farms has been increasing since 2010. Only slightly better conditions exist in the Holy Cross, Silesia and Lower Silesia voivodeships (Fig. 1).

Despite the general decrease in the amount of the organic farms, in the case of the Varmia-Masuria, Podlasie and Lodz voivodeships the development indices are higher than the recession indices (Fig.1).

Two characteristic units were distinguished as well. In the Kuyavia-Pomerania and Masovia voivodeships the increase in the amount of the organic farms was higher than its decrease but, despite that, the agricultural area covered by the organic farms decreased. The reverse situation occurred in the Opole voivodeship where, despite the general decrease in the amount of the organic farms between 2010 and 2018 years, the area of the organic farms increased (Fig. 1, 2).

DISCUSSION

The abovementioned three development periods of the organic agriculture in Poland must be supplemented by a fourth period – the years 2013-2018. In these years, one can observe a recession in the popularity of this form of agriculture and decline of organic farming, both in terms of the amount and area.

Specifier	ation	Recession in the organic farming in years 2010-2018								
Specifica		none	low	medium	high	very high				
	very favorable	Varmia-Masuria	-	-	_	_				
Conditions for organic	favorable	Kuyavia- Pomerania	Lublin, Opole	Pomerania	Lower Silesia, Holy Cross	Subcarpathia				
production [Stuczyński et al. 2007]	medium favorable	Masovia, Lodz, Podlasie, Lubusz	West Pomerania, Greater Poland	_	_	_				
	unfavorable	-	_	-	Silesia	Lesser Poland				

 Table 3. Comparison of conditions for organic production with the recession in the organic farms in voivodships in years 2010-2018

The obtained spatial diversification of the voivodeships with use of the arithmetic mean of synthetic indices (W_{synt3}) was compared to the synthetic index of usefulness for organic production which was worked out in the Institute of Soil Science and Plant Cultivation (IUNG-PIB) in Puławy [Biesiacki et al. 2004] (Fig. 3).

As one can note in the comparison, in extreme cases an analogy exists between the conditions for organic production and the recent development situation of this agriculture form. In the Warmia-Masuria voivodeship, having the best conditions, the amount and area of the organic farms within the investigated period is still growing. However, it must be emphasized that since 2014, a decrease trend has occurred, which is analogical to the general situation in Poland. The greatest recession in establishing the organic farms occurred in the Lesser Poland and Silesia voivodeships. It is certainly connected to the disadvantageous conditions for the organic production in these regions. The situation in the voivodeships with medium advantage conditions for organic production can be considered as quite stable. In these regions, the development slightly predominates the recession (Mazovia, Lodz, Podlasie, Lubusz) or the recession is on a low level (West Pomerania, Greater Poland).

The most diversified group comprises the voivodeships with the advantageous conditions for organic production. There is no such relationship in this set as in the previously mentioned cases because one can find not only the voivodeships with no recession or low recession

Fig. 3. Types of voivodeships in terms of usefulness for organic production and of recession / development of organic farms

(Kuyavia-Pomerania, Lublin, Opole), but also with very significant recession, if compared to the previous periods (Lower Silesian, Holy Cross, Subcarpathia). Attention should be given to the worst situation in the southern voivodeships, mainly the mountain ones. The voivodeships: Kuyavia-Pomerania, Lublin, Opole, Pomerania, Lower Silesia, Holy Cross and Subcarpathia provide the evidence that the recession of the Polish agriculture can be of economic and social reasons, not only the environmental ones (Fig. 3).

CONCLUSIONS

The performed analysis proved that the statement being repeated in scientific works till 2015, according to which "the interest in the organic production in Poland is still growing" [Makowska 2015], has become false for the recent years.

The recession in the organic farming on various levels can be found in 10 voivodeships. The recession on a very high level of 30–65% occurs in the Silesian, Holy Cross, Lesser Poland and Subcarpathia voivodeships. The satisfactory development level of the organic farms within the 9-year period can be confirmed only for three voivodeships: Lodz, Podlasie and Warmia-Masuria.

The decrease of the interest in the organic form of agriculture, confirmed by the decreasing number of the existing organic farms, has been observed in all voivodeships – however, great differences in the intensity of this decrease can be noted, both in relation to the individual years and the voivodeships.

On the basis of the presented data, it can be stated that in the majority of the voivodeships, the crisis of the Polish organic farming began in the years 2012–2013. With regard to the spatial situation of the development of the organic farms in Poland, one can distinguish four characteristic regions:

- southern with high or very high recession, where very dynamic fall in the organic farms occurred,
- northwestern with medium recession of the organic farming,
- northeastern where, despite the general fall of the amount of the organic farms, the development occurred within the years 2010-2018,
- central where, despite the general fall of the amount of the organic farms as well, one can find a stable situation within the years 2010–2018.

In statistical and spatial terms, however, it must be stated that the percentage distribution of the existing organic farms in the voivodeships is quite stable within the years 2014-2018. In 2014, among 24829 organic farms, the most was found in the voivodeships: Warmia-Masuria, (4234), West Pomerania (3526) and Podlasie (3432). In total, the farms in these voivodeships constituted 45.1% of all organic farms in Poland. The lowest number of such farms was found in the voivodeships: Opole (75), Silesia (230) and Kuyavia-Pomerania (401), what constituted 2.8% in total. In 2018, the most organic farms were found again in the voivodeships of Warmia-Masuria (3393) and Podlasie (2989), but the West Pomerania voivodeship (2060) was replaced by the Mazovia (2284). The share again amounted to 45.1%. The lowest number of the organic farms again occurred in the voivodeships of Opole (61), Silesia (148) and Kuyavia-Pomerania (395), what constituted 3.1% of all organic farms in Poland. It is interesting that the situation in 2010 was the same in the group of voivodeships with the lowest number of the farms but diametrically different in the group of voivodeships with the highest number of the farms. In 2010, there were 79 organic farms in the Opole, 228 in the Silesian and 327 in the Kuyavia-Pomerania voivodeships what constituted 3.1%. The set of the voivodeships with the highest share also contained, apart from the Warmia-Masuria (2279) and West Pomerania (2373), the mountain voivodeships: Subcarpathia (2091) and Lesser Poland (2156). In total, the organic farms in these units constituted 43.2% of all organic farms in Poland.

The most negative dynamics of changes in the share of the organic farms was observed in the Lesser Poland voivodeship – fall from 10.5% in 2010 to 4% in 2018, as well as in Subcarpathia – fall from 10.2% in 2010 to 5.9% in 2018. The positive dynamics occurred in the Podlasie voivodeship – growth from 9.9% in 2010 to 15.6% in 2018, as well as in the Warmia-Masuria – growth from 11.1% in 2010 to 17.7% in 2018.

As the final conclusion, it must be emphasized that there are fewer and fewer farmers wanting to establish or transform their farms into organic ones. It is interesting in so far as the demand for organic products and healthy food is increasingly high.

Acknowledgements

Paper published as a part of the project "VI Scientific and Technical Conference New Directions Of Research In Environmental Engineering, Energy, Geodesy And Spatial Economy" in Srebrna Gora, Poland.

REFERENCES

- Biesiacki A., Kuś J., Madej A. 2004. Assessment of natural conditions for agricultural production, Wyd. IUNG Puławy
- 2. Dąbkowski N., Podawca K. 2017. Development of ecological farms in the Płock and Gostynin counties, Notatki Płockie : kwartalnik Towarzystwa Naukowego Płockiego, nr 4 (253), 18-24
- Drabarczyk K., Wrzesińska-Kowal J. 2015. The development of organic farming in Poland, Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego, Ekonomika i Organizacja Gospodarki Żywnościowej nr 111, 19–31
- 4. Duda-Krynicka M., Jaskólecki H. 2010. The history and opportunities of organic farming in Poland, Problemy Ekologii, Vol. 14, nr 2, marzec-kwiecień 2010, str. 85-91
- Golik D., Żmija D. 2017. Organic Farming and the Prospects for Its Development in Poland in the Light of the European Union's Experience, Zeszyty Naukowe Uniwersytet Ekonomiczny w Krakowie, 1 (961), s. 117–129
- Kacprzak E., Kołodziejczak A. 2011. Development of organic farming in Poland over the years 2006–2009, Biuletyn IGSEiGPUAM, Seria Rozwój Regionalny i Polityka Regionalna, Nr 14. Poznań, 117-135
- Komorowska D. 2007. Ecological farms in Poland in the light of data released by the Central Statistical Office GUS, Zeszyty Naukowe Szkoły Głównej

Gospodarstwa Wiejskiego w Warszawie, Problemy Rolnictwa Światowego, T. 2 (XVII), z. 2, 352-359

- Kowalska A. 2010. The Determinants of Organic Agriculture Development in Poland and in Other European Countries, Annales Universitatis Mariae Curie-Skłodowska, sectio H, Oeconomia, 44 (XLIV), 47-63
- Ligenzowska J. 2014. Organc farming in the world, Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie, Problemy Rolnictwa Światowego tom 14 (XXIX), zeszyt 3, 150–157
- Łuczka-Bakuła W. 2013. The development of organic farming in Poland after its accession to the EU in the terms of the support from RDP 2004-2006, Rocz. Nauk. SERIA, t. XV, z. 1, 135-140
- Makowska M., Gotkiewicz W., Pawlewicz A. 2015. Organic agriculture in spatial and environmental terms in Poland, Stowarzyszenie Ekonomistów Rolnictwa I Agrobiznesu, Roczniki Naukowe, tom XVII, Zeszyt 4, 160-165
- Runowski H. 2009. Organic farming progress or regress? Roczniki Nauk Rolniczych, Seria G, Tom 96, z. 4, 182-193
- Stuczyński T., Jończyk K., Korzeniowska-Pucułek R., Kuś J., Terelak H. 2007. Natural conditions for organic agricultural production and its current state in Poland, Studia i Raporty IUNG-PIB, Puławy, z. 5, 55-78
- 14. The report on organic farming in Poland in 2015– 2016, Agricultural and Food Quality Inspection, Główny Inspektorat Jakości Handlowej Artykułów Rolno-Spożywczych, Warszawa 2017
- The report on organic farming in Poland in 2017– 2018, Agricultural and Food Quality Inspection, Główny Inspektorat Jakości Handlowej Artykułów Rolno-Spożywczych, Warszawa 2019
- 16. Zegar J. 2009. From research on socially sustainable agriculture. Final report - synthesis and recommendations, Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej, Państwowy Instytut Badawczy, nr 175, Warszawa, 1-104