PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of finite element method for analysis of nanostructures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with application of the finite element method in modelling and simulation of nanostructures. The finite element model is based on beam elements with stiffness properties gained from the quantum mechanics and nonlinear spring elements with forcedisplacement relation are gained from Morse potential. Several basic mechanical properties of structures are computed by homogenization of nanostructure, e.g. Young's modulus, Poisson's ratio. The problems connecting with geometrical parameters of nanostructures are considered and their influences to resulting homogenized quantities are mentioned.
Rocznik
Strony
116--120
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
  • Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
Bibliografia
  • 1. Brenner D.W. (1990), Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B, Vol. 42, 9458.
  • 2. Cornell W.D., Cieplak P., Bayly C.I. (1995), A second generation force-field for the simulation of proteins, nucleic-acids, and organicmolecules, Journal of American Chemical Society, 117, 5179-5197.
  • 3. Hartmann M.A., Todt M., Rammerstorfer F.G., Fisher F.D., Paris O. (2013), Elastic properties of graphene obtained by computational mechanical tests, Europhysics Letters, 103, 68004-p1-68004-p6.
  • 4. Hemmasizadeh A., Mahzoon M., Hadi E., Khandan R. (2008), A method for developing the equivalent continuum model of a single layer graphene sheet, Thin Solid Films, 516, 7636-7640.
  • 5. Hosseini K.S.A., Moshrefzadeh S.H. (2013), Mechanical properties of double-layered graphene sheets, Computational Materials Science, 69, 335-343.
  • 6. Lee C., Wei X., Kysar J.W., Hone J. (2008), Measurement of the elastic properties and intrisic strength of monolayer graphene, Science, 321, 385-388.
  • 7. Li Ch., Chou T.W. (2003), A structural mechanics approach for the analysis of carbon nanotube, International Journal of Solids and Structures, 40, 2487-2499.
  • 8. Machida K. (1999), Principles of Molecular Mechanics, Kodansha and John Wiley & Sons Co-publication, Tokyo.
  • 9. Marenić E., Ibrahimbegovic A., Sorić J., Guidault P.A. (2013), Homogenized elastic properties of graphene for small deformations, Materials, 6, 3764-3782.
  • 10. Mayo S.L., Olafson B.D., Goddard W.A. (1990), Dreiding–a generic force-field for molecular simulations, Journal of Physical Chemistry, 94, 8897–8909.
  • 11. Meo M., Rossi M. (2006), Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling, Composite Science and Technology, 66, 1597-1605.
  • 12. Rafiee R., Heidarhaei M. (2012), Investigation of chirality and diameter effects on the Young's modulus of carbon nanotubes using non-linear potentials, Composite Structures, 94, 2460-2464.
  • 13. Rappe A.K., Casewit C.J., Colwell K.S. (1992), A full periodic-table force-field for molecular mechanics and molecular dynamics simulations, Journal of American Chemical Society, 114, 10024- 10035.
  • 14. Ru C.Q. (2000), Effective bending stiffness of carbon nanotubes, Physical Review B, 62, 9973-9976.
  • 15. Saito S., Dresselhaus D., Dresselhaus M.S. (1998), Physical Properties of Carbon Nanotubes, Imperical College Press, London.
  • 16. Sakhaee-Pour A. (2009), Elastic properties of single-layered graphene sheet, Solid State Communications, 149, 91-95.
  • 17. Scarapa F., Adhikari S., Srikantha P. (2009), Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology, 20, 065709.
  • 18. Shokrieh M.M, Rafiee R. (2010) Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach, Materials & Design, 31, 790-795.
  • 19. Thostenson E.T., Chunyu L., Chou T.W. (2005), Nanocomposites in context, Composite Science and Technology, 65, 491-516.
  • 20. Tsai J.L., Tu J.F. (2010), Characterizing mechanical properties of graphite using molecular dynamics simulation, Materials & Design, 31, 194-199.
  • 21. Tserpes K.I., Papanikos P. (2005), Finite element modelling of single-walled carbon nanotubes, Composites Part B, 36, 468-477.
Uwagi
This work was supported by grants from the Slovak Grant Agency VEGA no. 1/0731/16.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18208578-baa5-48c7-9f82-e2b68a6fb836
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.