PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital close-range photogrammetry of El Fuerte de Samaipata

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Cyfrowa fotogrametria bliskiego zasięgu El Fuerte de Samaipata
Języki publikacji
EN
Abstrakty
EN
The El Fuerte de Samaipata site inscribed on the UNESCO World Heritage List presents a pre-Columbian, multicultural history on the surface of a big sandstone rock. There are several ways of creating precise, high-resolution documentation of this rock, including classic geodetic surveys, modern high-definition surveying (terrestrial laser scanning), and close-range photogrammetry. Close-range photogrammetry is a low cost technique, and the detailed RGB documentation provided by it aids architectural and archaeological research. This paper presents the results of the application of close-range photogrammetry in different light bands (visual, infrared, and thermal). Sony ILCE-7RM2, Parrot Sequoia, and Flir Tau2 cameras were used. The authors obtained over 50 thousand images and over 27 thousand multispectral images (multiplied by four bands, which gave over 100 thousand single band images). The multispectral and thermal data enabled risk maps to be created for conservation purposes.
PL
Wpisane na Listę Światowego Dziedzictwa UNESCO El Fuerte de Samaipata jest świadectwem bogatej, wielokulturowej, prekolumbijskiej historii rzeźbienia tej wielkiej piaskowcowej skały. Opisano zastosowanie wielu sposobów precyzyjnej dokumentacji całej skały, w tym klasyczne metody geodezyjne, nowoczesne pomiary w wysokiej rozdzielczości (naziemne skanowanie laserowe) i fotogrametrię bliskiego zasięgu. Fotogrametria bliskiego zasięgu jest techniką niskokosztową, a dostarczona przez nią szczegółowa dokumentacja RGB pomaga w badaniach architektonicznych i archeologicznych. W artykule przedstawiono wyniki zastosowania fotogrametrii bliskiego zasięgu w różnych pasmach promieniowania elektromagnetycznego (widzialnym, podczerwonym i termicznym). Zastosowano kamery Sony ILCE-7RM2, Parrot Sequoia i Flir Tau2. Autorzy zebrali ponad 50 tysięcy obrazów RGB i ponad 27 tysięcy obrazów multispektralnych, co pomnożone przez cztery rejestrowane pasma dało w sumie ponad 100 tysięcy pojedynczych obrazów do przetworzenia. Dane multispektralne i termiczne były szczególnie przydatne przy opracowaniu map ryzyka w celach konserwatorskich.
Czasopismo
Rocznik
Tom
Strony
35--42
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Faculty of Architecture, Wrocław University of Science and Technology
  • Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences
  • Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences
  • Faculty of Architecture, Wrocław University of Science and Technology
Bibliografia
  • [1] El Fuerte de Samaipata, https://whc.unesco.org/en/list/883/ [accessed: 26.08.2019].
  • [2] Skarby świata: 890 pomników kultury i przyrody z Listy Światowego Dziedzictwa UNESCO, J. Egert-Romanowska, K. Duran, M. Kalinowska (wyd.), Wydawnictwo Naukowe PWN, Warszawa [2010].
  • [3] Levoy M., Pulli K., Curless B. et al., The Digital Michelangelo Project: 3D Scanning of Large Statues, [in:] J.R. Brown, K. Akeley (chairmans), Proceedings of SIGGRAPH’00, The 27th International Conference on Computer Graphics and Interactive Techniques” 23–28 July 2000, New Orleans, LA, USA, ACM Press–Addison-Wesley Publishing, New York, NY, 2000, 131–144, doi: 10.1145/344779.344849.
  • [4] Bernardini F., Rushmeier H., Martin I.M., Mittleman J., Taubin G., Building a digital model of Michelangelo’s Florentine Pieta, “IEEE Computer Graphics and Applications” 2002, Vol. 22, Iss. 1, 59–67, doi: 10.1109/38.974519.
  • [5] Gruen A., Remondino F., Zhang L., Photogrammetric reconstruction of the Great Buddha of Bamiyan, Afghanistan, “The Photogrammetric Record” 2004, Vol. 19, Iss. 107, 177–199, doi: 10.1111/j.0031-868X.2004.00278.x.
  • [6] Guidi G., Beraldin J.A., Atzeni C., High accuracy 3D modelling of cultural heritage: The Digitizing of Donatello’s “Maddalena”, “IEEE Transactions on Image Processing” 2004, 13, 370–380, doi: 10.1109/tip.2003.822592.
  • [7] El-Hakim S., Beraldin J., Remondino F., Picard M., Cournoyer L., Baltsavias E., Using Terrestrial Laser Scanning and Digital Images for the 3D Modelling of the Erechteion, Acropolis of Athens, [in:] Proceedings of DMACH Conference on Digital Media and its Applications in Cultural Heritage, 3–6 November 2008, Amman, Jordan, Amman 2008, 3–16, https://www.semanticscholar.org/paper/Using-Terrestrial-Laser-Scanning-and-Digital-Images-El-Hakim-Beraldin/06d006e5ebbe109db04cca877cd0991c6c440dd6.
  • [8] Remondino F., El-Hakim S., Girardi S., Rizzi A., Benedetti S., Gonzo L., 3D Virtual Reconstruction and Visualization of Complex Architectures – The 3D-ARCH Project, “The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences” 2009, Vol. XXXVIII-5/W1, https://www.isprs.org/proceedings/XXXVIII/5-W1/pdf/remondino_etal.pdf.
  • [9] Remote Sensing for Archaeological Heritage Management. Proceedings of the 11th EAC Heritage Management Symposium, Reykjavík, Iceland, 25–27 March 2010, D.C. Cowley (ed.), Europae Archaeologia Consilium, Association Internationale sans But Lucratif, Siège social, Bruxelles 2011.
  • [10] Doneus M., Neubauer W., Laser scanners for 3D documentation of stratigraphic excavations, [in:] M. Baltsavias, A. Gruen, M. Pateraki, L. Van Gool (eds.), Recording, Modeling and Visualization of Cultural Heritage. Proceedings of the International Workshop, Centro Stefano Franscini, Monte Verita, Ascona, Switzerland, May 22–27, 2005, Taylor & Francis, London 2006, 193–204.
  • [11] El-Hakim S., Gonzo L., Voltolini F. et al., Detailed 3D modelling of castles, “International Journal of Architectural Computing” 2007, Vol. 5, Iss. 2, 199–220, doi: 10.1260/1478-0771.5.2.200.
  • [12] Akca D., Remondino F., Novak D., Hanusch T., Schrotter G., Gruen A., Recording and Modelling of Cultural Heritage Objects with Coded Structured Light Projection Systems, [in:] S. Campana (ed.), From space to place. 2. International Conference on Remote Sensing in Archaeology. Proceedings of the 2. international workshop, CNR, Rome, Italy, December 2–4, 2006, Archaeopress, Oxford 2006, 375–382.
  • [13] Remondino F., Rizzi A., Agugiaro G. et al., Geomatics and Geoinformatics for Digital 3D Documentation, Fruition and Valorization of Cultural Heritage, [in:] Proceedings of EUROMED 2010 Workshop “Museum Futures: Emerging Technological and Social Paradigms”, 8–13 November 2010, Lemessos, Cyprus, https://www.researchgate.net/publication/323245824_Geomatics_and_Geoinformatics_for_the_Digital_3D_Documentation_Fruition_and_Valorization_of_Cultural_Heritage [accessed: 14.06.2019].
  • [14] Virtual Reality in Archaeology, A. Barceló, M. Forte, D.H. Sanders (eds.), BAR International Series, Oxford 2000.
  • [15] Bruno F., Bruno S., De Sensi G., Luchi M.L., Mancuso S., Muzzupappa M., From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition, “Journal of Cultural Heritage” 2010, Vol. 11, Iss. 1, 42–49, doi: 10.1016/j.culher.2009.02.006.
  • [16] Fowles P.S., Larson J.H., Dean C., Solajic M., The laser recording and virtual restoration of a wooden sculpture of Buddha, “Journal of Cultural Heritage” 2003, Vol. 4, Suppl. 1, 367–371, doi: 10.1016/S1296-2074(02)01141-X.
  • [17] Remondino F., Rizzi A., Girardi S., Petti F., Avanzini M., 3D ichnology – Recovering digital 3D models of dinosaur footprints, “The Photogrammetric Record” 2010, Vol. 25, Iss. 131, 266–282, doi: 10.1111/j.1477-9730.2010.00587.x.
  • [18] Yastikli N., Documentation of cultural heritage using digital photogrammetry and laser scanning, “Journal of Cultural Heritage” 2007, Vol. 8, Iss. 4, 423–427, doi: 10.1016/j.culher.2007.06.003.
  • [19] Themistocleous K., Ioannides M., Agapiou A., Hadjimitsis D.G., The methodology of documenting cultural heritage sites using photogrammetry, UAV, and 3D printing techniques: the case study of Asinou Church in Cyprus, [in:] D.G. Hadjimitsis, K. Themistocleous, S. Michaelides, G. Papadavid (eds.), Proceedings of Spie. Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015). 16–19 March 2015, Paphos, Cyprus, Vol. 9535, Spie, [Washington 2015], doi: 10.1117/12.2195626.
  • [20] Dhonju H.K., Xiao W., Sarhosis V. et al., Feasibility Study of Low-Cost Image-Based Heritage Documentation in Nepal, “The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences” 2017, Vol. XLII-2/W3, 237–242, doi: 10.5194/isprs-archives-XLII-2-W3-237-2017.
  • [21] Hampel U., Maas H.G., Application of Digital Photogrammetry for Measuring Deformation and Cracks during Load Tests in Civil Engineering Material Testing, [in:] A. Gruen, H. Kahmen (eds.), Optical 3-D measurement techniques. Applications in GIS, mapping, manifactoring, quality control, robotics, navigation, mobile mapping, medical imaging, VR generation and animation. Papers presented on 6th Conference on Optical 3D Measurement Techniques”, Zurich, Switzerland, 22–25 September 2003, Chair of Photogrammetry and Remote Sensing, Institute of Geodesy and Photogrammetry, ETZ, Zürich 2003, Vol. 2, 80–88, https://www.semanticscholar.org/paper/APPLICATION-OF-DIGITAL-PHOTOGRAMMETRY-FOR-MEASURING-Hampel-Maas/c585e7041596be195c6c9b350aef4139f53769dc.
  • [22] D’Apuzzo N., Surface Measurement and Tracking of Human Body Parts from Multi Station Video Sequences, Ph.D. Thesis, Institute of Geodesy and Photogrammetry, ETH, Zürich 2003.
  • [23] Luhmann Th., Close range photogrammetry for industrial applications, “ISPRS Journal of Photogrammetry and Remote Sensing” 2010, Vol. 65, Iss. 6, 558–569, doi: 10.1016/j.isprsjprs.2010.06.003.
  • [24] Gonzalez-Aguilera D., Gomez-Lahoz J., Forensic terrestrial photogrammetry from a single image, “Journal of Forensic Sciences” 2009, Vol. 54, Iss. 6, 1376–1387, doi: 10.1111/j.1556-4029.2009.01170.x.
  • [25] Toth C., Jóźków G., Remote sensing platforms and sensors: A survey, “ISPRS Journal of Photogrammetry and Remote Sensing” 2016, Vol. 115, 22–36, doi: 10.1016/j.isprsjprs.2015.10.004.
  • [26] Lasaponara R., Masini N., Satellite Remote Sensing in Archaeology: past, present and future, “Journal of Archaeological Science” 2011, Vol. 38, Iss. 9, 1995–2002, doi: 10.1016/j.jas.2011.02.002.
  • [27] Batic J. et al. (eds.), Photogrammetry as a Method of Documenting the Cultural Heritage, Ministry of Culture, Ljubljana 1996.
  • [28] Dallas R.W.A., Architectural and archaeological photogrammetry, [in:] K.B. Atkinson (ed.), Close Range Photogrammetry and Machine Vision, Whittles Publishing, Caithness, U.K. 1996, 283–302.
  • [29] Hanke K., Grussenmeyer P., Architectural photogrammetry: Basic theory, procedures, tools, [in:] Y. Egels, M. Kasser (eds.), Digital Photogrammetry, Taylor & Francis, London 2002, 300–339, https://www.isprs.org/commission5/tutorial02/gruss/tut_gruss.pdf.
  • [30] Rouse J.W. Jr., Haas R.H., Schell J.A., Deering D.W., Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation, “Progress Report no. 7”, Remote Sensing Center, Texas A&M University, College Station, https://ntrs.nasa.gov/search.jsp?R=19740022555 [accessed: 15.06.2019].
  • [31] Wang J., Rich P.M., Price K.P., Kettle W.D., Relations between NDVI and tree productivity in the central Great Plains, “International Journal of Remote Sensing” 2004, Vol. 25, No. 16, 3127–3138, doi: 10.1080/0143116032000160499.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18203265-f9c7-4802-b6fb-ef46ea8ef78d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.