PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation of recent geopotential models in Tierra Del Fuego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents a validation study of global geopotential models (GGM) in the region of Fagnano Lake, located in the southern Andes. This is an excellent area for this type of validation because it is surrounded by the Andes Mountains, and there is no terrestrial gravity or GNSS/levelling data. However, there are mean lake level (MLL) observations, and its surface is assumed to be almost equipotential. Further-more, in this article, we propose improved geoid solutions through the Residual Terrain Modelling (RTM) approach. Using a global geopotential model, the results achieved allow us to conclude that it is possible to use this technique to extend an existing geoid model to those regions that lack any information (neither gravimetric nor GNSS/levelling observations). As GGMs have evolved, our results have improved progressively. While the validation of EGM2008 with MLL data shows a standard de-viation of 35 cm, GOCO05C shows a deviation of 13 cm, similar to the results obtained on land.
Słowa kluczowe
Czasopismo
Rocznik
Strony
931--943
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • Facultad de Ciencias Astronomicas y Geofísicas, Universidad Nacional de la Plata, La Plata, Argentina
  • Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
autor
  • Facultad de Ciencias Astronomicas y Geofísicas, Universidad Nacional de la Plata, La Plata, Argentina
  • Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
autor
  • Facultad de Ciencias Astronomicas y Geofísicas, Universidad Nacional de la Plata, La Plata, Argentina
  • Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Bibliografia
  • 1. Alothman A, Godah W, Elsaka B (2016) Gravity field anomalies from recent GOCE satellite-based geopotential models and terrestrial gravity data: a comparative study over Saudi Arabia. S Arab J Geosci 9(5):1–12. doi:10.1007/s12517-016-2393-y
  • 2. Andersen OB, Knudsen P, Berry P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res. doi:10.1029/2008JC005179
  • 3. Andersen OB, Knudsen P, Kenyon SC, Holmes S (2014), Global and arctic marine gravity field from recent satellite altimetry (DTU13). In: 76th EAGE Conference and Exhibition 2014. Extended abstract. doi:10.3997/2214-4609.20140897. Accessed 1 Mar 2017
  • 4. Bomfin EP, Braitenberg C, Molina EC (2013) Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophys J Int 195(2):870–882. doi:10.1093/gji/ggt283
  • 5. Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh W-D (2014) EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41:8089–8099. doi:10.1002/2014GL061904
  • 6. Del Cogliano D, Dietrich R, Richter A, Perdomo R, Hormaechea JL, Liebsch G, Fritsche M (2007) Regional geoid determination in Tierra del Fuego including GPS/levelling. Geol Acta 5(4):315–322
  • 7. Erol B (2012) Spectral evaluation of Earth geopotential models and an experiment on its regional improvement for geoid modeling. J Earth Syst Sci 121(3):823–835
  • 8. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The Shuttle radar topography mission. Rev Geophys. doi:10.1029/2005RG000183
  • 9. Fecher T, Pail R, Gruber T, The GOCO Consortium (2017) GOCO05c: anew combined gravity field model based on full normal equations and regionally varying weighting. Surv Geophys 38(3):571–590. doi:10.1007/s10712-016-9406-y
  • 10. Ferreira VG, Zhang Y, Freitas SRC (2013) Validation of GOCE gravity field models using GPS-leveling data and EGM08: a case study in Brazil. J Geod Sci 3(3):209–218. doi:10.2478/jogs-2013-0027
  • 11. Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. The Ohio State University, Reports of the Department of Geodetic Science and Surveying, vol 355, p 116–126
  • 12. Forsberg R (2003) An overview manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs. Danish National Space Center. http://cct.gfy.ku.dk/publ_cct/cct1792.pdf. Accessed 25 May 2017
  • 13. Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. J Geophys Res 86(B9):7843–7854
  • 14. Förste C, Bruinsma S, Abrykosov O, Flechtner F et al (2013) EIGEN-6C3stat—the newest high resolution global combined gravity field model based on the 4th release of the GOCE direct approach. IAG scientific assembly, 1–6 September, Postdam, Germany. http://icgem.gfz-potsdam.de/tom_longtime. Accessed 25 May 2017
  • 15. Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Schaller T, Götze J, Ebbing J, Marty JC, Flechtner F, Balmino G, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. 5th GOCE User Workshop, Paris. http://icgem.gfz-potsdam.de/tom_longtime. Accessed 25 May 2017
  • 16. Förste C, Bruinsma SL, Rudenko S, Abrikosov O, Lemoine J-M, Marty J-C, Neumayer KH, Biancale R (2016) EIGEN-6S4 a time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse (version 2). GFZ Data Services. http://doi.org/10.5880/icgem.2016.008. http://icgem.gfz-potsdam.de/tom_longtime. Accessed 25 May 2017
  • 17. Gilardoni M, Reguzzoni M, Sampietro D (2016) GECO: a global gravity model by locally combining GOCE data and EGM2008. Stud Geophys Geod 60(2):228–247. doi:10.1007/s11200-015-1114-4
  • 18. Godah W, Krynski J, Szelachowska M (2015) On the accuracy assessment of the consecutive releases of GOCE-based GGMs over the area of Poland, Assessment of GOCE geopotential models. Special Issue Newton’s Bull 5:49–62Google Scholar
  • 19. Gomez ME, Del Cogliano D, Perdomo R (2013) Geoid modelling in the area of Fagnano Lake, Tierra del Fuego (Argentina): insights from mean lake-level observations and reduced gravity data. Acta Geod Geophys Hu 48(2):139–147. doi:10.1007/s40328-012-0009-x
  • 20. Gomez ME, Del Cogliano D, Perdomo R, Hormaechea JL (2014) A new combined quasigeoid model in Tierra del Fuego. Geol Acta 12(3):219–226. doi:10.1344/GeologicaActa2014.12.3.4
  • 21. Gruber T, Visser PNAM, Ackermann CH, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85:845–860. doi:10.1007/s00190-011-0486-7
  • 22. Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Company, San Francisco
  • 23. Hirt C (2013) RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone. Mar Geod 36(2):183–202
  • 24. Hirt C, Featherstone WE, Marti U (2010) Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J Geod 84:557–567. doi:10.1007/s00190-010-0395-1
  • 25. Hirt C, Rexer M, Claessens S (2015) Topographic evaluation of fifth-generation GOCE gravity field models—globally and regionally. Newton’s Bull 5:163–186
  • 26. IGN (2016) Red de Nivelación Argentina. http://www.ign.gob.ar/NuestrasActividades/Geodesia/Nivelacion/Introduccion. Accessed 25 May 2017
  • 27. Jekely C (2009) Omission error, data requirements, and the fractal dimension of the geoid. In: Sneew et al. (eds) VII Hotine-Marussi Symposium on Mathematical Geodesy. Proceedings of the symposium in Rome, vol 137, 6–10 June 2009. Springer, Berlin. doi:10.1007/978-3-642-22078-4
  • 28. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA/GSFC and the national imagery and mapping agency (NIMA) geopotential model EGM96. NASA Goddard Space Flight Center, Greenbelt
  • 29. Lodolo E, Lipai H, Tassone A, Zanolla C, Menichetti M, Hormaechea JL (2007) Gravity map of the Isla Grande de Tierra del Fuego, and morphology of Lago Fagnano. Geol Acta 5(4):307–314
  • 30. Mayer-Gürr T, The GOCO Team (2015) The combined satellite gravity field model GOCO05s. EGU2015-12364, EGU general assembly, Vienna, Austria. https://www.researchgate.net/publication/277325861_The_new_combined_satellite_only_model_GOCO05s. Accessed 25 May 2017
  • 31. McCarthy D, Petit G (eds) (2004) IERS conventions (2003). IERS technical note No. 32, IERS conventions centre
  • 32. McMillan WD (1958) The theory of potential. Theoretical mechanics, vol 2. Dover, New York
  • 33. Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74(7/8):552–560
  • 34. Pacino C, Tocho C (2009) Validation of EGM2008 over Argentina. SIRGAS report
  • 35. Pavlis N (2010) Global gravitational modelling & development and applications of geopotential models. In: Guarracino Tochoand (ed) The determination and use of the geoid. Lecture and Seminar notes, International IGes Geoid School, La Plata
  • 36. Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Proceedings of the 1st International Symposium of the International Gravity Field Service, vol 18. Harita Dergisi, Istanbul, p 318–323
  • 37. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res 117(B04406):1–38. doi:10.1029/2011JB008916
  • 38. Piñon DA (2016) Development of a precise gravimetric geoid model for Argentina. Masters thesis, School of Mathematical and Geospatial Sciences. College of Science Engineering and Health RMIT University
  • 39. Rapp RH (1986) Global geopotential solutions, in Lect. Notes in Earth science, mathematical and numerical techniques in physical geodesy, vol 7. Springer, Berlin, p 365–415. doi:10.1007/BFb0010136
  • 40. Richter A, Hormaechea JL, Dietrich R, Perdomo R, Fritsche M, Del Cogliano D, Liebsch G, Mendoza L (2010) Lake-level variations of Lago Fagnano, Tierra del Fuego: observations, modelling and interpretation. J Limnol 69(1):29–41
  • 41. Ries J, Bettadpur S, Eanes R, Kang Z, Ko U, McCullough C, Nagel P, Pie N, Poole S, Richter T, Save H, Tapley B (2016) The combined gravity model GGM05C. GFZ Data Serv. doi:10.5880/icgem.2016.002
  • 42. Rizos C, Willis P (eds) (2011) Earth on the edge: science for a sustainable planet. In: Proceedings of the IAG general assembly, Melbourne, Australia
  • 43. Sansò F, Sideris M (eds) (2013) Geoid determination. Theory and Methods. Lecture notes in earth system sciences. Springer, Berlin
  • 44. Smith DA (1998) There is no such thing as “The” EGM96 geoid: subtle points on the use of a global geopotential model. IGeS Bull 8:17–28
  • 45. Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. Ph.D. thesis. Institut für Astronomische und Physikalische Geodäsie
  • 46. Tocho C (2012) Geoidegravimetrico para la República Argentina. Ph. D thesis. National University of La Plata, La Plata
  • 47. Torge W (2001) Geodesy, 3rd edn. Walter de Gruyter, Berlín
  • 48. Torge W, Müller J (2012) Geodesy, 4th edn. De Gruyter, Berlin. ISBN 978-3-11-020718-7
  • 49. Tsoulis D, Patlakis K (2013) A spectral assessment review of current satellite only and combined Earth gravity models. Rev Gephys 51:186–243
  • 50. Ustun A, Abbak RA (2010) On global and regional spectral evaluation of global geopotential models. J Geophys Eng 7(4):369–379
  • 51. Vergos GS, Tziavos IN, Sideris MG (2006) On the validation of CHAMP- and GRACE-type EGMs and the construction of a combined model. GeodCartogr 55(3):115–131
  • 52. Yi W, Rummel R (2013) A comparison of GOCE gravitational models with EGM2008. J Geodyn 73:14–22. doi:10.1016/j.jog.2013.10.004
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-181ac704-15f9-439a-8499-46cee2ccc3b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.