Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper revisits the non-Markovian state vector of an Ornstein-Uhlenbeck process-driven power system dynamics in non-linear filtering framework. The Fokker-Planck setting accounts for the process noise correction term and ignores the observation noise correction term in the analysis of stochastic systems. This paper introduces the notion of the ‘Kushner-Stratonovich setting’, which accounts for the process noise as well as observation noise correction terms in the conditional moment evolution equation. The Kushner-Stratonovich setting is the cornerstone formalism of nonlinear filtering problems of stochastic control systems. We wish to estimate the rotor angle from given observations using two non-linear filters: (i) a Gaussian non-linear filter, and (ii) the extended Kalman filter. This paper develops two non-linear filters for a filtering model for the machine rotor angle, in which the Ornstein-Uhlenbeck process is the process noise and the Brownian noise process is the observation noise. The filter efficacy is examined by utilizing quite extensive numerical experimentations with two sets of data.
Czasopismo
Rocznik
Tom
Strony
355--370
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Electrical Engineering Department, S.N. Patel Institute of Technology and Research Centre, Umrakh, Bardoli, Surat-394345, Gujarat, India
Bibliografia
- DÖRFLER, F. and BULLO, F. (2010) Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 930-937, DOI: 10.1109/acc.2010.5530690
- FUJITA, S. and FUKAO, S. (1970) Error analysis of optimal filtering for coloured noise. IEEE Transactions on Automatic Control, 15(4), 452-454.
- GERMANI, A., MANES, C. and PALUMBO, P. (2007) Filtering of stochastic non-linear diferential systems via a Carleman approximation approach. IEEE Transactios of Automatic Control, 52, 2166–2172 .
- HÄNGGI, P. and JUNG, P. (1995) Colored noise in dynamical systems. In: I. Prigogine and S. A. Rice., eds., Advances in Chemical Physics. John Wiley and Sons, New York, 239-323.
- HIRPARA, R. H. (2020) Filtering theory for a power system dynamics in the presence of stochastic damping coefficient. IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh. 473-476, DOI: 10.1109/TENSYMP50017.2020.9230651
- HIRPARA, R. H. (2021) A stochastic equivalence approach for an Ornstein-Uhlenbeck process driven power system dynamics. Journal of Applied Mathematics, Statistics and Informatics. 17(2), 47-58, DOI: 10.2478/jamsi-2021-0008
- HIRPARA, R.H. and SHARMA, S.N. (2015) An Ornstein-Uhlenbeck processdriven power system dynamics. IFAC PapersOnLine. 48(30), 409-414, DOI: 10.1016/j.ifacol.2015.12.413
- JAZWINSKI, A.H. (1970) Stochastic Processes and Filtering Theory. Academic Press, New York and London.
- KARATZAS, I. and SHREVE, S.E. (1991) Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York.
- KUNDUR, P. (1994) Power System Stability and Control. Mc-Graw-Hill, New York.
- LIPTSER, R.S. and SHIRYAYEV, A.N. (1977) Statistics of Random Processes. 1st edition. Springer, Berlin.
- NAGARSHETH, S.H., BHATT, D.S. and SHARMA, S.N. (2020) Filtering theory for a weakly coloured noise process. Differential Equations and Dynamical Systems. DOI: 10.1007/s12591-020-00553-5.
- PUGACHEV, V.S. and SINITSYN, I.N. (1987) Stochastic Differential Systems (Analysis and Filtering). John-Wiley and Sons, Chichester.
- SÄRKKÄ, S. and SOLIN, A. (2019) Applied Stochastic Differential Equations. Cambridge University Press.
- SCHÄFER, B., MATTHIAE, M., ZHANG, X., ROHDEN, M., TIMME, M. and WITTAUT, D. (2017) Escape Routes, Weak Links and Desynchronization in Fluctuation-driven Networks. Physical Review E. 95, 060203-(1-5), DOI: 10.1103/PhysRevE.95.060203.
- SHARMA, S.N. (2009) A Kushner approach for small random perturbations of a stochastic Duffing-van der Pol system. Automatica. 45, 1097–1099.
- SIMPSON-PORCO, J.W., D¨ORFLER, F. and BULLO, F. (2012) Droop-controlled inverters are Kuramoto oscillators. IFAC Proceedings Volumes, 45(26): 264-269, DOI:10.3182/20120914-2-US-4030.00055
- STRATONOVICH, R. L. (1963) Topics in the Theory of Random Noise. vol. 1. Gordon and Breach, New York.
- TÖNJES, R. (2010) Synchronization transition in the Kuramoto model with colored noise. Physical Review E. 81, 055201-(1-4), DOI: 10.1103/PhysRevE.81.055201
- ZHU, G. (2022) An Adaptive Fuzzy Neural Network Based On Progressive Gaussian Approximate Filter with Variable Step Size. Information Technology and Control, 51(1), 86-103, DOI: 10.5755/j01.itc.51.1.29776
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18155ea7-c51b-4cb4-ace2-caa540d7fcee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.