Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presented describes a comprehensive study using chlorophyll fluorescence induction (CFI) as a non-destructive method for assessing phytophagous damage, particularly by cruciferous fleas, in oilseed radish (Raphanus sativus l. var. oleiformis Pers.) during early developmental stages. This method has been adapted for ecological monitoring and has implications for building ecological prognostic models. Several key parameters were measured and analyzed in relation to environmental stressors as well as plant damage, according to the basic indicators of the chlorophyll fluorescence induction curve (CFI) in relation to different gradations of cotyledon damage in the interval ‘traces of damage – 70% damage’ for three varieties. Typical CFI curves of cotyledons for different varieties of oilseed rape with different degrees of damage were constructed and its reliability (factor-dispersion and correlation schemes) was evaluated in the practice of indirect identification of adaptive plant response to the stress caused by pest damage with the assessment of the interaction of this damage with environmental parameters of the environment at different levels of stressfulness of the year from the standpoint of hydrothermal moisture regimes. This made it possible to expand the possibility of building ecological prognostic models for assessing the stress response systems of plant development in case of their damage in the early stages of growth processes. A decrease in the basic criteria of the chlorophyll fluorescence curve (F0, Fpl, Fm, Fst) in the range of 20.78–34.56% in the conjugate system damage degree-environmental stress of the period was established. This led to a decrease in the cotyledon water potential (Lwp) in the range of 3.7–41.2%, the plant viability index (RFd) in the range of 8.3–40.1%, and an increase in the indicator of endogenous (stress) factors (Kef) by 6.5–36.4%. On the basis of these studies, the possibility of using the chlorophyll fluorescence method for ecological and entomological analysis of the stress response of plants to the degree of damage to the primary assimilative cotyledonous tissues of plants at different levels of hydrothermal support during their growth period was proven.
Czasopismo
Rocznik
Tom
Strony
227--243
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Vinnytsia National Agrarian University, Sonyachna St. 3, 21008 Vinnytsia, Ukraine
Bibliografia
- 1. Ali L., Jo H., Choi S.M., Kim Y., Song J.T., Lee J.-D. 2022. Comparison of hyperspectral imagery and physiological characteristics of bentazone-tolerant and -susceptible soybean cultivars. Agronomy, 12, 2241. https://doi.org/10.3390/agronomy12102241
- 2. Alonso L., Van Wittenberghe S., Amorós-López J., Vila-Francés J., Gómez-Chova L., Moreno J. 2017. Diurnal cycle relationships between passive fluorescence, PRI and NPQ of vegetation in a controlled stress experiment. Remote Sensing, 9(8), 770. https://doi.org/10.3390/rs9080770
- 3. Amri M., Abbes Z., Trabelsi I., Ghanem M.E., Mentag R., Kharrat M. 2021. Chlorophyll content and fluorescence as physiological parameters for monitoring Orobanche foetida Poir. infection in faba bean. PLoS ONE, 16(5), e0241527. https://doi.org/10.1371/journal.pone.0241527.
- 4. Arnold A.L.M., McGrath C., Reinhardt A. 2023. Effects of oak processionary moth (Thaumetopoea processionea L.) outbreaks on the leaf performance and health of urban and forest oak trees (Quercus robur L.) in Brandenburg, Germany. Forests, 14(1), 124. https://doi.org/10.3390/f14010124
- 5. Badenes-Pérez F.R. 2018. Trap crops and insectary plants in the order brassicales. Annals of the Entomological Society of America, 112(4), 318–329, 2018. https://doi.org/10.1093/aesa/say043
- 6. Berezyuk S., Pryshliak N., Zubar І. 2021. Ecological and economic problems of fertilizers application in crop production. Bulgarian Journal of Agricultural Science, 27(1), 29–37.
- 7. Brestic M., Zivcak M. 2013. PSII fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications. In: Rout G.R., Das A.B. (Eds.) Molecular stress physiology of plants. Springer Dordrecht, 87–131. https://doi.org/10.1007/978-81-322-0807-5_4
- 8. Brockman R. 2020. Developing alternative practices for management of flea beetles attacking eggplant and leafy brassicaceous greens. Ph.D. Thesis. Kentucky Department of Agriculture Specialty Crop Block Grant. https://uknowledge.uky.edu/entomology_etds/59
- 9. de Souza M.W.R., Ferreira E.A., dos Santos J.B., Soares M.A., de Castro e Castro B.M., Zanuncio J.C. 2020. Fluorescence of chlorophyll a in transgenic maize with herbicide application and attacked by Spodoptera frugiperda (Lepidoptera: Noctuidae). Phytoparasitica, 48(4), 567–573. https://doi.org/10.1007/s12600-020-00816-5
- 10. Durigon M., Camera A., Cechin J., Vargas L., Chavarria G. 2019. Does spraying of atrazine on triazine-resistant canola hybrid impair photosynthetic processes? Planta Daninha, 37, 1–11. https://doi.org/10.1590/S0100-83582019370100087
- 11. Gikonyo M.W., Biondi M., Beran F. 2019. Adaptation of flea beetles to Brassicaceae: host plant associations and geographic distribution of Psylliodes latreille and Phyllotreta chevrolat (Coleoptera, Chrysomelidae). Zookeys, 856, 51–73. https://doi.org/10.3897/zookeys.856.33724.
- 12. Heath J.R. 2017. Evaluation of flea beetle (Phyllotreta spp.) resistance in spring and winter-type Canola (Brassica napus). Ph.D. Thesis. University of Guelph, Ontario, Canada.
- 13. Holoborodko K., Seliutina O., Alexeyeva A., Brygadyrenko,V., Ivanko I., Shulman M., Pakhomov O., Loza I., Sytnyk S., Lovynska V. 2022. The impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the state of aesculus hippocastanum photosynthetic apparatus in the urban environment. International Journal of Plant Biology, 13, 223–234. https://doi.org/10.3390/ijpb13030019
- 14. Kargar M., Ghorbani R., Rashed Mohassel M.H., Rastgoo M. 2019. Chlorophyl fluorescence – a tool for quick identification of Accase and ALS inhibitor herbicides performance. Planta Daninha, 37, e019166813. https://doi.org/10.1590/s0100-83582019370100132
- 15. Kalaji H.M., Jajoo А., Oukarroum А., Brestic М., Zivcak М., Samborska І.А., Cetner M.D., Łukasik І., Goltsev V., Ladle R.J. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(102), 1–11. https://doi.org/:10.1007/s11738-016-2113-y
- 16. Kalaji H.M., Goltsev V.N., Żuk-Golaszewska K., Zivcak M., Brestic M. 2017. Chlorophyll Fluorescence. Understanding Crop Performance: Basics and Applications. CRC Press, Boca Raton.
- 17. Kaletnik G., Lutkovska S. 2020. Strategic priorities of the system modernization environmental safety under sustainable development. Journal of Environmental Management and Tourism, 11, 5(45), 1124–1131. https://doi.org/10.14207/ejsd.2021.v10n1p81
- 18. Kaletnik G., Pryshliak N., Khvesyk M., Khvesyk Ju. 2022. Legal regulations of biofuel production in Ukraine. Polityka Energetyczna. 25(1), 125–142. https://doi.org/10.33223/epj/146411
- 19. Lutkovska S., Kaletnik G. 2020. Modern organizational and economic mechanism for environmental safety. Journal of Environmental Management and Tourism, 11, 3(43), 606–612. https://doi.org/10.14505/jemt.11.3(43).14
- 20. Moskalets T., Pеlеkhаta N., Svitelskyi M., Verheles P., Yakovenko R. 2023. Bacterial blight of viburnum (Pseudomonas syringae pv. viburnum): Biological features, causes, and consequences of manifestation, methods of control in the system of decorative and fruit gardening. Scientific Horizons. 26(5), 46–55. https://doi.org/10.48077/scihor5.2023.46
- 21. Moustaka J., Meyling N.V., Hauser T.P. 2021. Induction of a compensatory photosynthetic response mechanism in tomato leaves upon short time feeding by the chewing insect Spodoptera exigua. Insects, 12(6), 562. https://doi.org/10.3390/insects12060562
- 22. Moustaka J, Moustakas M. 2023. Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis. Biosensors (Basel). 13(8), 796. doi: https://doi.org/10.3390/bios13080796
- 23. Moustakas, M., Calatayud, A., Guidi, L. 2021. Chlorophyll fluorescence imaging analysis in biotic and abiotic stress. Frontiers in Plant Science, 12, 658500. https://doi.org/10.3389/fpls.2021.658500.
- 24. Nies T., Niu Y., Ebenhöh O., Matsubara S., MatuszyńskaA. 2021. Chlorophyll fluorescence: How the quality of information about PAM instrument parameters may affect our research. bioRxiv, e443801. https://doi.org/10.1101/2021.05.12.443801
- 25. Parker B., Howard J., Binks R., Finch S., Jukes A. 2002. Brassicas: Biology and control of brassica flea beetles by integrating trap crops with insecticide use. HDC Final Rep. Project FV, 1–23.
- 26. Pavlovic D., Nikolic B., Djurovic S., Andelkovic A., Marisanvljevic D. 2014. Chlorophyll as a measure of plant health: Agroecological aspects. Pestic Phytomedicine, 29, 21–34. https://doi.org/10.2298/PIF1401021P.
- 27. Pérez-Bueno M.L., Pineda M., Barón M. 2019. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Front. Plant Sci, 10, 1135. https://doi.org/10.3389/fpls.2019.01135
- 28. Rasool R., Lone G.M. 2022. Seasonal incidence of striped flea beetle Phyllotreta striolata F. on cruciferous crops in North Kashmir. Indian Journal of Entomology, e21120. https://doi.org/10.55446/IJE.2021.137
- 29. Rolfe S.A., Scholes J.D. 2010. Chlorophyll fluorescence imaging of plant-pathogen interactions. Protoplasma, 247, 163–175. https://doi.org/10.1007/s00709-010-0203-z
- 30. Romanov V.A., Galelyuka I.B., Sarakhan V. 2010. Portable fluorometer Floratest and specifics of its application. Sensor Electronics and Microsystem Technology, 7(3), .39–44, https://doi.org/10.18524/1815-7459.2010.3.114470
- 31. Sánchez-Moreiras A.M., Graña E., Reigosa M.J., Araniti F. 2020. Imaging of chlorophyll a fluorescence in natural compound-induced stress detection. Frontiers in Plant Science, 11, e583590. https://doi.org/10.3389/fpls.2020.583590
- 32. Sneyd J., Fewster R.M., McGillivray D. 2022. Mathematics and Statistics for Science; Springer Nature Switzerland AG: Cham, Switzerland. https://doi.org/10.1007/978-3-031-05318-4
- 33. Soroka J.J., Holowachuk J.M., Gruber M.Y. Grenkow L.F. 2011. Feeding by flea beetles (Coleoptera: Chrysomelidae; Phyllotreta spp.) is decreased on canola (Brassica napus) seedlings with increased trichome density. Journal of Economic Entomology, 104(1), 125–136. https://doi.org/10.1603/EC10151.
- 34. Soroka J., Grenkow L. 2013. Susceptibility of Brassicaceous plants to feeding by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 106(6), 2557–2567. https://doi.org/10.1603/ec13102
- 35. Suárez J.C., Vanegas J.I., Contreras A.T., Anzola J.A., Urban M.O., Beebe S.E., Rao I.M. 2022. Chlorophyll fluorescence imaging as a tool for evaluating disease resistance of common bean lines in the Western Amazon Region of Colombia. Plants (Basel), 11(10), e1371. https://doi.org/10.3390/plants11101371
- 36. Tsytsiura Y.H. 2016. Dynamics of pest infestation of oilseed radish crops in the Right-Bank Forest-Steppe of Ukraine. Collection of scientific works of Uman National University of Horticulture. Part 1. Agricultural Sciences, 89, :242–251. [in Ukrainian].
- 37. Tsytsiura Y.H. 2020. Modular-vitality and ideotypical approach in evaluating the efficiency of construction of oilseed radish agrophytocenosises (Raphanus sativus var. oleifera Pers.). Agraarteadus, 31(2), 219–243. https://doi.org/10.15159/jas.20.27
- 38. Tsytsiura Y.H. 2021. Selection of effective software for the analysis of the fractional composition of the chaotic seed layer using the example of oilseed radish. Engenharia Agrícola, Jaboticabal, 41(2), 161–170. https://doi.org/10.1590/1809-4430-Eng. Agric.v41n2p161-170/2021
- 39. Tsytsiura Y. 2022. Chlorophyll fluorescence induction method in assessing the efficiency of pre-sowing agro-technological construction of the oilseed radish (Raphanus sativus L. var. oleiformis Pers.) agrocenosis. Agronomy Research, 20(3) 682–724. https://doi.org/10.15159/ar.22.062
- 40. Tsytsiura Y. 2023. Assessment of the relation between the adaptive potential of oilseed radish varieties (Raphanus sativus L. var. oleiformis Pers.) and chlorophyll fluorescence induction parameters. Agronomy Research, 20(1), 193–221. https://doi.org/10.15159/AR.23.001
- 41. Tsytsiura Y. 2023a. Evaluation of oilseed radish (Raphanus sativus l. var. oleiformis Pers.) oil as a potential component of biofuels. Engenharia Agrícola, Jaboticabal, 43(sp. iss.), e20220137. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v43nepe20220137/2023
- 42. Tsytsiura Y. 2023b. Estimation of biomethane yield from silage fermented biomass of oilseed radish (Raphanus sativus l. var. oleiformis Pers.) for different sowing and harvesting dates. Agronomy Research, 21(2), 940–978. https://doi.org/10.15159/AR.23.101
- 43. Tsytsiura Y. 2023c. Possibilities of using FijiImagej2, WipFrag and Basegrain programs for morphometric and granulometric soil analysis. Engenharia Agrícola, Jaboticabal, 43(6), e20230101. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v43n6e20230101/2023
- 44. Walters D.R. 2015. Photosynthesis in attacked plants and crops. In: Physiological Responses of Plants to Attack. Crop & Soil Systems Research Group SRUC Edinburgh, (Eds Walters D.R.), Wiley-Blackwell, UK.
- 45. Zheng X., Koopmann B., Ulber B., von Tiedemann A. 2020. A global survey on diseases and pests in oilseed rape-current challenges and innovative strategies of control. Frontiers in Agronomy, 2, e590908. https://doi.org/10.3389/fagro.2020.590908
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-181389e8-92b0-40d9-b218-a6ffdbdddb7c