PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of physicochemical parameters on zooplankton in the brackish, coastal Vistula Lagoon

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyzes whether physicochemical properties significantly influence the occurrence of zooplankton in a brackish reservoir. The studies were carried out on the Vistula Lagoon in August and September from 2006 to 2009 at 32 research sites. The environmental conditions in the Vistula Lagoon varied widely. At the time of the investigation, 17 species of rotifers, six species of Cladocera, and ten species of Copepoda were noted, and the total density of plankton fauna ranged from 145 to 765 ind. dm−3. Statistical analysis demonstrated a significant correlation between the occurrence of some zooplankton species and certain environmental parameters, whereas the sampling sites were grouped according to study years. The zooplankton systems recorded at the research sites in 2006 constitute the most disparate group. Thus, it can be concluded that physicochemical properties might significantly impact both individual species (depending on their environmental demands) and entire zooplankton clusters.
Czasopismo
Rocznik
Strony
49--56
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Tourism, Recreation and Ecology, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Department of Tourism, Recreation and Ecology, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Department of Tourism, Recreation and Ecology, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Department of Tourism, Recreation and Ecology, University of Warmia and Mazury, Olsztyn, Poland
Bibliografia
  • [1] Ahmad, U., Parveen, S., Khan, A. A., Kabir, H. A., Mola, H. R. A., Ganai, A. H., 2011. Zooplankton population in relation to physico-chemical factors of a sewage-fed pond of Aligarh (UP), India. BLM 3 (SI2), 336—341.
  • [2] Alexander, R., (diss.) 2012. Interactions of zooplankton and phytoplankton with cyanobacteria. Univ. Nebraska, 69 pp.
  • [3] Andrulewicz, E., Szymelfenig, M., Urbański, J., Węsławski, J. M., 2008. The Baltic Sea — What is Worth Knowing. Astra Print Shop, Gdynia, 113 pp., (in Polish).
  • [4] Bednarz, T., Starzecka, A., Mazurkiewicz-Boroń, G., 2002. Microbiological processes accompanying the blooming of algae and cyanobacteria. Wiad. Botan. 46 (1—2), 45—55, (in Polish).
  • [5] Boix, D., Gascón, S., Sala, J., Badosa, A., Brucet, S., López-Flores, R., Martinoy, M., Gifre, J., Quintana, X., 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597 (1), 53—69.
  • [6] Boix, D., Sala, J., Gascón, S., Martinoy, M., Gifre, J., Brucet, S., Badosa, A., López-Flores, R., Quintana, X., 2007. Comparative diversity of crustaceans and aquatic insects from various water body types in coastal Mediterranean wetlands. Hydrobiologia 584 (1), 347—359.
  • [7] Bowersox, B. J., Scarnecchia, D. L., Miller, S. E., 2014. Distribution, abundance and vertical migrations of Leptodora kindtii in a mainstream Missouri River reservoir, Montana, USA. J. Freshwater Ecol. 29 (2), 171—186.
  • [8] Brucet, S., Boix, D., Gascón, S., Sala, J., Quintana, X. D., Badosa, A., Søndergaard, M., Lauridsen, T. L., Jeppesen, E., 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32 (4), 692—702.
  • [9] Chubarenko, B., Margoński, P., 2008. The Vistula Lagoon. In: Schiewer, U. (Ed.), Ecology of Baltic Coastal Waters. Ecol. Stud. Springer-Verlag, Berlin-Heidelberg, 167—195.
  • [10] Cognetti, G., Maltagliati, F., 2000. Biodiversity and adaptive mechanisms in brackish water fauna. Mar. Pollut. Bull. 40 (1), 7—14.
  • [11] Cottenie, K., Nuytten, N., Michels, E., De Meester, L., 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442 (1—3), 339—350.
  • [12] Decker, M. B., Breitburg, D. L., Purcell, J. E., 2004. Effects of low dissolved oxygen on zooplankton predation by the ctenophore Mnemiopsis leidyi. Mar. Ecol.-Prog. Ser. 280, 163—172.
  • [13] Dehui, Z., 1995. Effects of low pH on zooplankton in some suburban waterbodies of Chongqing City. J. Environ. Sci. 7 (1), 31—35.
  • [14] Dmitrieva, O. A., Semenova, A. S., 2012. Seasonal dynamics and trophic interactions of phytoplankton and zooplankton in the Vistula Lagoon of the Baltic Sea. Oceanology 52 (6), 785—789.
  • [15] Dube, A., Jayaraman, G., Rani, R., 2010. Modelling the effects of variable salinity on the temporal distribution of plankton in shallow coastal lagoons. J. Hydro-Environ. Res. 4 (3), 199—209.
  • [16] Fontaneto, D., De Smet, W. H., Ricci, C., 2006. Rotifers in saltwater environments, re-evaluation of an inconspicuous taxon. J. Mar. Biol. Assoc. U.K. 86 (4), 623—656.
  • [17] Gao, Q., Xu, Z., Zhuang, P., 2008. The relation between distribution of zooplankton and salinity in the Changjiang Estuary. Chin. J. Oceanol. Limnol. 26 (2), 178—185.
  • [18] Golterman, H. L., Clymo, R. S., 1969. Methods for Chemical Analysis of Fresh Waters. Blackwell Scientific, Oxford, 172 pp.
  • [19] González, E. J., Matos, M. L., Peñaherrera, C., Merayo, S., 2011. Zooplankton abundance, biomass and trophic state in some Venezuelan Reservoirs. In: Atazadeh, I. (Ed.), Biomass and Remote Sensing of Biomass. InTech, Rijeka, 57—74.
  • [20] Gophen, M., 2012. The ecology of Keratella cochlearis in Lake Kinneret (Israel). Open J. Modern Hydrol. 2 (1), 1—6.
  • [21] Hall, C. J., Burns, C. W., 2001. Effects of salinity and temperature on survival and reproduction of Boeckella hamata (Copepoda: Calanoida) from a periodically brackish lake. J. Plankton Res. 23 (1), 97—103.
  • [22] Hermanowicz, W., Dojlido, J., Dożańska, W., Koziorowski, B., Zerbe, J., 1999. Physicochemical Analyses of Water and Sewage. Arkady, Warszawa, 556 pp., (in Polish).
  • [23] Holst, H., Zimmermann, H., Kausch, H., Koste, W., 1998. Temporal and spatial dynamics of planktonic rotifers in the Elbe Estuary during spring. Estuar. Coast. Shelf Sci. 47 (3), 261—273.
  • [24] ISO 10519:1997 (International Organization for Standardization), 1997. Determination of Chlorophyll Content. International Organization for Standardization, Switzerland, 24 pp.
  • [25] Ivanova, M. B., Kazantseva, T. I., 2006. Effect of water pH and total dissolved solids on the species diversity of pelagic zooplankton in lakes: a statistical analysis. Russ. J. Ecol. 37 (4), 264—270.
  • [26] Jongman, R. H. G., Ter Braak, C. J. F., Van Tongeren, O. F. R., 1995. Data Analysis in Community and Landscape Ecology. Cambridge Univ. Press, Cambridge, 324 pp.
  • [27] Kasprzak, K., Niedbała, W., 1981. Biocenotic indicators in quantitative research. In: Górny, M., Grüm, L. (Eds.), Methods Applied in Soil Zoology, PWN, Warszawa, 397—416, (in Polish).
  • [28] Kaya, M., Fontaneto, D., Segers, H., Altindağ, A., 2010. Temperature and salinity as interacting drivers of species richness of planktonic rotifers in Turkish continental waters. J. Limnol. 69 (2), 297—304.
  • [29] Kinne, O., 1964. Physiologische und ökologische Aspekte des Lebens in Ästuarien. Helgoland. Wiss. Meer. 11 (3), 131—156.
  • [30] Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk, begründet von Max Voigt. Überordnung Monogononta. Gebrüder Borntraeger, Berlin-Stuttgart, 673 pp.
  • [31] Kruk, M., Rychter, A., Mróz, M., 2012. The Vistula Lagoon. Environment and its Research in the VISLA Project. Wyd. PWSZ, Elbląg, 178 pp.
  • [32] Kudari, V. A., Kanadami, R. D., 2008. Impact of changed trophic status on the zooplankton composition in six water bodies of Dharwad district, Karnataka state (South India). Environ. Monit. Assess. 144 (1—3), 301—313.
  • [33] Lampert, U., 1997. Zooplankton research: the contribution of limnology to general ecological paradigms. Aquat. Ecol. 31 (1), 19—27.
  • [34] Laprise, R., Dodson, J. J., 1994. Environmental variability as a factor controlling spatial patterns in distribution and species diversity of zooplankton in the St. Lawrence Estuary. Mar. Ecol.-Prog. Ser. 107, 67—81.
  • [35] Margoński, P., Horbowa, K., Grzyb, A., Krajewska-Sołtys, A., Linkowski, T. B., 2006. Food composition of herring larvae in the Vistula Lagoon (southern Baltic Sea): impact of hydrological factors and changes in zooplankton community structure. ICES CM Documents 2006/F 03, 17 pp., http://www.ices.dk/sites/pub/CM%20Doccuments/2006/F/F0306.pdf.
  • [36] Marques, S. C., Azeiteiro, U. M., Marques, J. C., Neto, J. M., Pardal, M. A., 2006. Zooplankton and ichthyoplankton communities in a temperate estuary: spatial and temporal patterns. J. Plankton Res. 28 (3), 297—312.
  • [37] Mustapha, M. K., 2009. Zooplankton assemblage of Oyun Reservoir, Offa, Nigeria. Rev. Biol. Trop. 57 (4), 1027—1047.
  • [38] Nawrocka, L., Kobos, J., 2011. The trophic state of the Vistula Lagoon: an assessment based on selected biotic and abiotic parameters according to the Water Framework. Oceanologia 53 (3), 881—894, http://dx.doi.org/10.5697/oc.53-3.881.
  • [39] Ojaveer, H., Jaanus, A., MacKenzie, B., Martin, G., Olenin, S., Radziejewska, T., Telesh, I., Zettler, M. L., Zaiko, A., 2010. Status of biodiversity in the Baltic Sea. PLoS One 5 (9), http://dx.doi.org/10.1371/journal.pone.0012467.
  • [40] Paturej, E., 2005. Zooplankton of seaside lakes in the coastal region of the Baltic Sea. Wyd. UWM, Olsztyn, 129 pp., (in Polish).
  • [41] Paturej, E., 2006. Assessment of the trophic state of the coastal Lake Gardno based on community structure and zooplankton-related indices. Electr. J. Polish Agricult. Univ. 9 (2), http://www.ejpau.media.pl/volume9/issue2/art-17.html.
  • [42] Paturej, E., 2009. A zooplankton-based study of coastal lakes. Baltic Coast. Zone 13 (2), 25—32.
  • [43] Paturej, E., Kruk, M., 2011. The impact of environmental factors on zooplankton communities in the Vistula Lagoon. Oceanol. Hydrobiol. St. 40 (2), 37—48.
  • [44] Perumal, V., Rajkumar, M., Perumal, P., Rajasekar, T. K., 2009. Seasonal variations of plankton diversity in the Kaduviyar estuary, Nagapattinam, southeast coast of India. J. Environ. Biol. 30 (6), 1035—1046.
  • [45] Pinto-Coelho, R., Pinel-Alloul, B., Méthot, G., Havens, K. E., 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Can. J. Fish. Aquat. Sci. 62 (2), 348—361.
  • [46] PN 73/C-04576/08-1973, 1973. Water and sewage. Studies on the content of nitrogen compounds. Measuring nitrate nitrogen. Colorimetric method with phenol-disulphonic acid, 4 pp.
  • [47] PN-C-04576-01:1976, 1976. Water and sewage. Studies on the content of nitrogen compounds. Measuring ammonium nitrogen with a colorimetric indol-phenolic method, 3 pp.
  • [48] Psuty, I., Wilkońska, H., 2009. The stability of fish assemblages under unstable conditions: a ten year series from the Polish part of the Vistula Lagoon. Arch. Polish Fish. 17 (2), 65—76.
  • [49] Radwan, S., Bielańska-Grajner, I., Ejsmont-Karabin, J., 2004. Rotifers (Rotifera). Wyd. Uniw. Łódz., Łódź, 447 pp., (in Polish).
  • [50] Rajagopal, T., Thangamani, A., Sevarkodiyone, S. P., Sekar, M., Archunan, G., 2010. Zooplankton diversity and physico-chemical conditions in three perennial ponds of Virudhunagar district, Tamilnadu. J. Environ. Biol. 31 (3), 265—272.
  • [51] Richardson, A. J., 2008. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65 (3), 279—295.
  • [52] Roddie, B. D., Leakey, R. J. G., Berry, A. J., 1984. Salinity-temperature tolerance and osmoregulation in Eurytemora affinis (Poppe) (Copepoda: Calanoida) in relation to its distribution in the zooplankton of the upper reaches of the Forth estuary. J. Exp. Mar. Biol. Ecol. 79 (2), 191—211.
  • [53] Rychter, A., Paturej, E., Jabłońska-Barna, I., 2011. Animals of the Vistula Lagoon. In: Kruk, M., Rychter, A., Mróz, M. (Eds.), Vistula Lagoon, 67—90, (in Polish).
  • [54] Sebastian, P., Stibor, H., Berger, S., Diehl, S., 2012. Effects of water temperature and mixed layer depth on zooplankton body size. Mar. Biol. 159 (11), 2431—2440.
  • [55] Silva, A. M. A., Barbosa, J. E. L., Medeiros, P. R., Rocha, R. M., Lucena-Filho, M. A., Silva, D. F., 2009. Zooplankton (Cladocera and Rotifera) variations along a horizontal salinity gradient and during two seasons (dry and rainy) in a tropical inverse estuary (Northeast Brazil). Pan-Am. J. Aquat. Sci. 4 (2), 226—238. APHA, AWWA, WEF, Washington, D.C., 1496 pp.
  • [56] Stelzer, C. P., 1998. Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species? Hydrobiologia 387—388, 349—353.
  • [57] Suresh, S., Thirumala, S., Ravind, H. B., 2011. Zooplankton diversity and its relationship with physicochemical parameters in Kundavada Lake, of Davangere District, Karnataka, India. ProEnvironment 4 (7), 56—59.
  • [58] Telesh, I. V., Khlebovich, V. V., 2010. Principal processes within the estuarine salinity gradient: a review. Mar. Pollut. Bull. 61 (4—6), 149—155.
  • [59] Ter Braak, C. J. F., Šmilauer, P., 2002. CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, 500 pp.
  • [60] Ter Braak, C. J. F., Šmilauer, P., 2003. Program CANOCO, Version 4.52. Biometris — Quantitative Methods in the Life and Earth Sciences. Plant Research International, Wageningen Univ. & Res. Centre, Wageningen.
  • [61] Tischler, W., 1949. Grundzüge der terrestrischen Tierökologie. F. Vieweg & Sohn, Braunscheig, 220 pp.
  • [62] Trojan, P., 1980. General Ecology. PWN, Warszawa, 419 pp., (in Polish).
  • [63] Tunowski, J., 2009. Zooplankton structure in heated lakes with differing thermal regimes and water retention. Arch. Polish Fish. 17 (4), 291—303.
  • [64] Vijverberg, J., Koelewijn, H. P., 2004. Effect of temperature on development and growth of the raptorial cladoceran Leptodora kindtii under laboratory conditions. Freshwater Biol. 49 (11), 1415—1422.
  • [65] Wang, S., Xie, P., Wu, S., Wu, A., 2007. Crustacea zooplankton distribution patterns and their biomass as related to trophic indicators of 29 shallow subtropical lakes. Limnologica 37 (3), 242—249.
  • [66] Warzocha, J., Szymanek, L., Witalis, B., Wodzinowski, T., 2016. The first report on the establishment and spread of the alien clam Rangia cuneata (Mactridae) in the Polish part of the Vistula Lagoon (southern Baltic). Oceanologia 58 (1), 54—58, http://dx.doi.org/10.1016/j.oceano.2015.10.001.
  • [67] Witek, Z., Zalewski, M., Wielgat-Rychert, M., 2010. Nutrient stocks and fluxes in the Vistula Lagoon at the end of the twentieth century. Wyd. Nauk. Akad. Pom., Słupsk-Gdynia, 186 pp.
  • [68] Yamada, Y., Ikeda, T., 1999. Acute toxicity of lowered pH to some oceanic zooplankton. Plankton Biol. Ecol. 46 (1), 62—67.
  • [69] Yildiz, Ş., Altindağ, A., Ergönül, M.B., 2007. Seasonal fluctuations in the zooplankton composition of a eutrophic lake: Lake Marmara (Manisa, Turkey). Turk. J. Zool. 31 (2), 121—126.
  • [70] Zar, J. H., 2010. Biostatistical Analysis. Prentice-Hall, New York, 944 pp.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-181265d6-ffb6-4425-8ca0-5fc2f801fdfa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.