Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study modelled the effects of operational parameters on the performance of the Falcon concentrator. For this purpose, the Falcon L40 concentrator was tested in narrow particle-size fractions (−600 + 425 μm, −425 + 300 μm, −300 + 212 μm, −212 + 150 μm, −150 + 106 μm, and −106 + 75 μm) at different washing water pressures and artificial gravity forces generated by a spinning bowl. The test samples were prepared artificially, comprising 2% magnetite (Fe3O4) and 98% calcite (CaCO3) by weight. The recovery and grade values of the 60 experimental conditions were investigated and compared for different operational parameters, including particle-size distributions, water pressures, and artificial gravity forces. Two empirical models were developed using non-linear regression analysis to indicate the effects of the operating parameter of the Falcon concentrator on its recovery and grade values. The operational parameters were found to impact the separation performance considerably. Therefore, the Falcon concentrator should operate under optimum conditions, which can be easily predicted using these models, to achieve improved recovery and grade values.
Wydawca
Czasopismo
Rocznik
Tom
Strony
495--505
Opis fizyczny
Bibliogr. 20 poz., fot., tab., wykr.
Twórcy
autor
- Hacettepe University, Mining Engineering Department, Turkey
autor
- Hacettepe University, Mining Engineering Department, Turkey
Bibliografia
- [1] A.A. Korkmaz, Modeling of the Effect of Falcon Concentrator Parameters Lignite Deashing with Taguchi Orthogonal Design. Int. J. Coal Prep. Util. 41 (11), 767-75 (2021). DOI: https://doi.org/10.1080/19392699.2021.1951718.
- [2] R. Burt, The Role of Gravity Concentration in Modern Processing Plants. Miner. Eng. 12 (11), 1291-1300 (1999). DOI: https://doi.org/10.1016/S0892-6875(99)00117-X.
- [3] R.Q. Honaker, D. Wang, K. Ho, Application of the Falcon Concentrator for Fine Coal Cleaning. Miner. Eng. 9(11), 1143-1156 (1996). DOI: https://doi.org/10.1016/0892-6875(96)00108-2.
- [4] J.F. Turner, Gravity Concentration, Past, Present and Future. Miner. Eng. 4 (3-4) 213-223 (1991). DOI: https://doi.org/10.1016/0892-6875(91)90131-E.
- [5] N. Aryasuta, M.S. Jena, N.R. Mandre, Application of Enhanced Gravity Separators for Fine Particle Processing: An Overview. J. Sustain. Metall. 7 (2), 315-39 (2021). DOI: https://doi.org/10.1007/s40831-021-00343-5.
- [6] B. Zhang, Y. Fan, H. Akbari, M.K. Mohanty, P. Brodzik, P. Latta, J.C. Hirschi. Evaluation of a New Fine Coal Cleaning Circuit Consisting of a Stack Sizer and a Falcon Enhanced Gravity Concentrator. Int. J. Coal Prep. Util.31 (2), 78-95 (2011). DOI: https://doi.org/10.1080/19392699.2010.537987.
- [7] R. Subrata, A. Chatterjee, Characterisation and Separation of Pyritic Sulfur from Limestone Using Falcon Concentrator. Miner. Process. Extr. Metall. Rev. 130 (4), 292-301 (2021).DOI: https://doi.org/10.1080/25726641.2019.1633500.
- [8] F. Boylu, Modeling of Free and Hindered Settling Conditions for Fine Coal Beneficiation through a Falcon Concentrator. Int. J. Coal Prep. Util. 33 (6), 277-289 (2013). DOI: https://doi.org/10.1080/19392699.2013.818986.
- [9] F. Oruç, S. Özgen, E. Sabah, An Enhanced-Gravity Method to Recover Ultra-Fine Coal from Tailings: Falcon Concentrator. Fuel 89 (9), 2433-2437 (2010). DOI: https://doi.org/10.1016/j.fuel.2010.04.009.
- [10] A. Falconer, Gravity Separation: Old Technique/New Methods. Sep Sci Technol. 12 (1), 31-48 (2003). DOI: https://doi.org/10.1080/1478647031000104293.
- [11] N.A. Aydogan, M. Kademli, Effect of Operational Conditions on Falcon Concentrator Performance with Different Particle Size Fractions Part. Sci. Technol. 38 (5), 636-640 (2020). DOI: https://doi.org/10.1080/02726351.2019.1573867.
- [12] M. Kademli, N.A. Aydogan, An Extraction of Copper from Recycling Plant Slag by Using Falcon Concentrator. Gospod. Surowcami. Min. 35 (1), (2019). DOI: https://doi.org/10.24425/gsm.2019.128202.
- [13] C. Marion, H. Williams, R. Langlois, O. Kökkılıç, F. Coelho, M. Awais, N.A. Rowson, K.E. Waters. The Potential for Dense Medium Separation of Mineral Fines Using a Laboratory Falcon Concentrator. Miner. Eng. 105 (May), 7-9 (2017). DOI: https://doi.org/10.1016/j.mineng.2016.12.008.
- [14] O. Kökkiliç, R. Langlois, K.E. Waters, A Design of Experiments Investigation into Dry Separation Using a Knelson Concentrator. Miner. Eng. 72 (March), 73-86 (2015). DOI: https://doi.org/10.1016/j.mineng.2014.09.025.
- [15] R.Q. Honaker, High Capacity Fine Coal Cleaning Using an Enhanced Gravity Concentrator. Miner. Eng. 11 (12), 1191-1199 (1998). DOI: https://doi.org/10.1016/S0892-6875(98)00105-8.
- [16] W. Xia, G. Xie, Y. Peng. Recent Advances in Beneficiation for Low Rank Coals. Powder Technol. 277, 206-221 (2015). DOI: https://doi.org/10.1016/j.powtec.2015.03.003.
- [17] A.A. El-Midany, S.S. Ibrahim, Does Calcite Content Affect Its Separation from Celestite by Falcon Concentrator? Powder Technol. 213 (1), 41-47 (2011). DOI: https://doi.org/10.1016/j.powtec.2011.07.003.
- [18] O. Onel, M. Tanrıverdi, The Use of Falcon Concentrator to Determine the Gravity Recoverable Gold (GRG) Content in Gold Ores. Inz. Miner. January-June. (2016). DOI: https://doi.org/10.29227/IM-2016-01-28.
- [19] J.S. Rabotin, B. Kroll, E.C. Florent, Fluid dynamicsbased modelling of the Falcon concentrator for ultrafine particle beneficiation. Miner. Eng. 23 (4), 313-320 (2010). DOI: https://doi.org/1010.1016/j.mineng.2009.10.001.
- [20] F.F. Lins, M.M. Veigat, J.A. Stewart, A. Papaliai, R. Papalia, Performance Of a New Centrifuge (Falcon) In Concentrating A Gold Ore From Texada Island, B.C.,Canada. Miner. Eng. 5, 10-12 (1992). DOI: https://doi.org/10.1016/0892-6875(92)90153-z.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-180e211a-7850-4918-a3c6-81e3befdd66b