PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Land use impact on overland flow: micro-scale field experimental analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ użytkowania ziemi na spływ powierzchniowy: analiza polowego eksperymentu w skali mikro
Języki publikacji
EN
Abstrakty
EN
The objective of this paper was to experimentally investigate the hydrological effect of land use on overland flow at micro-scale. The research was based on field experiments made with stationary and expeditionary measurements on runoff plots. Plots are located in the Curvature Subcarpathians, form part of the Aldeni Experimental Basin (Romania) and cover an area of 80 m2. The land is covered with perennial grass and bare soil. The experiments in this field were performed under natural and simulated rainfalls. The plots data (rainfall and discharges) obtained during the experiments conducted in the warm semester (IV–IX) and one artificial rainfall (1 mm∙min–1) were used. Significant variations in hydrological responses to rainfall rates were identified for the two land uses. On average, overland flow parameters on runoff plots covered with grasses were reduced to maximum 28% for discharges and to 50% for volumes while in the case of simulated rainfalls, the runoff rates were significantly increased on the bare soil plot. Grasses have a very important function as they cover and protect the soil and slow down the overland flow.
PL
Celem badań było doświadczalne zbadanie wpływu użytkowania ziemi na spływ powierzchniowy w skali mikro. Badania prowadzono w ramach eksperymentu polowego realizowanego metodą stacjonarnych i ekspedycyjnych pomiarów spływu z poletek. Poletka znajdują się w łuku pogórza Karpat, stanowią część eksperymentalnego Basenu Aldeni (Rumunia) i mają powierzchnię 80 m2. Pokrywają je wieloletnie trawy lub sama gleba. Eksperymenty prowadzono w warunkach naturalnego i symulowanego opadu. Do badań użyto danych (opad i odpływ) uzyskanych w eksperymencie prowadzonym w półroczu letnim (kwiecień–wrzesień) oraz z zastosowaniem sztucznego deszczu (1 mm∙min–1). Stwierdzono istotne zróżnicowanie reakcji hydrologicznej na wielkość opadów między dwoma sposobami użytkowania ziemi. Wartości parametrów spływu powierzchniowego na poletkach porośniętych trawą średnio zmniejszyły się do 28% odpływu i do 50% objętości. W przypadku symulowanego opadu deszczu szybkość odpływu istotnie zwiększyła się na poletkach pokrytych samą glebą. Trawy pełnią istotną funkcję, ponieważ pokrywają i chronią glebę oraz spowalniają spływ powierzchniowy.
Wydawca
Rocznik
Tom
Strony
67--74
Opis fizyczny
Bibliogr. 47 poz., fot., rys., tab.
Twórcy
autor
  • National Institute of Hydrology and Water Management, Bucharest, Romania
  • University of Bucharest, Department of Meteorology and Hydrology, Faculty of Geography, Bucharest, Romania
Bibliografia
  • ABAGIU P., MUNTEANU A., GASPAR R. 1973. Cercetări asupra rolului hidrologic al pădurii în bazinele hidrografice mici [Research on the role of forest hydrology in small basins]. Studies and Research. Vol. 29. Ser. I. Editura Agro-Silvică de Stat p. 353–392.
  • ADLER M.-J., MINEA G. 2014. Îndrumar pentru activitatea bazinelor reprezentative şi experimentale [Guide for representative and experimental basins activities]. Vol. 4. Bucureşti. Institutul de Hidrologie şi Gospodărire a Apelor. Editura Cuvinte cu minte pp. 34.
  • ATUCHA A., MERWIN I.A., BROWN M.G., GARDIAZABAL F., MENA F., ADRIAZOLA C., LEHMANN J. 2013. Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. Plant and Soil. Vol. 368. Iss. 1–2 p. 393–406.
  • BECKER A., NEMEC J. 1987. Macroscale hydrologic models in support to climate research. The Influence of Climate Change and Climatic Variability on the Hydrologie Regime and Water Resources. Proceedings of the Vancouver Symposium, August 1987. IAHS Publ. No. 168 p. 431–445.
  • BENAVIDES‐SOLORIO J., MACDONALD L.H. 2001. Post‐fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range. Hydrological Processes. Vol. 15. Iss. 15 p. 2931–2952.
  • BLÖSCHL G., SIVAPALAN M. 1995. Scale issues in hydrological modelling: A review. Hydrological Processes. Vol. 9. Iss. 3–4 p. 251–290.
  • CALDER I.R. 1992. Hydrologic effects of land-use change. In: Handbook of hydrology. Ed. D.R. Maidment. New York, USA. McGraw-Hill Inc. p. 13.1–13.50.
  • CHENDEŞ V., CHEVAL S., DUMITRU S. 2010. The assessment of some hydrometeorological drought indices in the Bend Subcarpathians and peripheral zones. Research Journal of Agricultural Science. Vol. 42. Iss. 3 p. 60–70.
  • COSTACHE R. 2014. Estimating multiannual average runoff depth in the middle and upper sectors of Buzău River Basin. Geographia Technica. Vol. 9. Iss. 2 p. 21–29.
  • COSTACHE R., FONTANINE F., CORODESCU E. 2014. Assessment of surface runoff depth changes in Sărăţel River basin, Romania using GIS techniques. Central European Journal of Geosciences. Vol. 6. Iss. 3 p. 363–372.
  • COVINO T.P., MCGLYNN B.L., MCNAMARA R.A. 2010. Tracer Additions for Spiraling Curve Characterization (TASCC): Quantifying stream nutrient uptake kinetics from ambient to saturation. Limnology and Oceanography: Methods. Vol. 8. Iss. 9 p. 484–498.
  • DEBANO L.F. 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology. Vol. 231 p. 195–206.
  • FOHRER N., HAVERKAMP S., ECKHARDT K., FREDE H.G. 2001. Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere. Vol. 26. Iss. 7 p. 577–582.
  • GBUREK W.J., SHARPLEY A.N. 1998. Hydrologic controls on phosphorus loss from upland agricultural watersheds. Journal of Environmental Quality. Vol. 27. Iss. 2 p. 267–277.
  • HARTANTO H., PRABHU R., WIDAYAT A.S., ASDAK C. 2003. Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management. Forest Ecology and Management. Vol. 180. Iss. 1 p. 361–374.
  • HAYWARD J.A. 1967. Plots for evaluating the catchment characteristics affecting soil loss. Journal of Hydrology (New Zealand). Vol. 6. Iss. 2 p. 120–137.
  • HUDSON N.W. 1993. Field measurement of soil erosion and runoff. Rome. FAO. ISBN 9251034060 pp. 139.
  • HUMPHRY J.B., DANIEL T.C., EDWARDS D.R., SHARPLEY A.N. 2002. A portable rainfall simulator for plot-scale runoff studies. Applied Engineering in Agriculture. Vol. 18. Iss. 2 p. 199–204.
  • IONIŢĂ I., RĂDOANE M., MIRCEA S. 2006. Romania. In: Soil erosion in Europe. Eds. J. Boardman, J. Poesen. Chichester, UK. John Wiley & Sons, Ltd. p. 155–166.
  • JOEL A., MESSING I., SEGUEL O., CASANOVA M. 2002. Measurement of surface water runoff from plots of two different sizes. Hydrological Processes. Vol. 16. Iss. 7 p. 1467–1478.
  • LVOVICH M.I. 1980. Soil trend in hydrology. Hydrological Sciences Journal. Vol. 25. Iss. 1 p. 33–45.
  • MAETENS W., VANMAERCKE M., POESEN J., JANKAUSKAS B., JANKAUSKIEN G., IONIŢĂ I. 2012. Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: A meta-analysis of plot data. Progress in Physical Geography. Vol. 36. Iss. 5 p. 599–653.
  • MEYER L.D., MCCUNE D.L. 1958. Rainfall simulator for runoff plots. Agricultural engineering. Vol. 39. Iss. 10 p. 644–648.
  • MINEA G., MOROŞANU G.A. 2016. Micro-scale hydrological field experiments in Romania. Open Geosciences. Vol. 8. Iss. 1 p. 154–160.
  • MIRCEA S., PETRESCU N., MUSAT M., RADU A., SARBU N. 2010. Soil erosion and conservation in Romania – some figures, facts and its impact on environment. Landslides. Vol. 15 p. 105–110.
  • MIRCEA S., PETRESCU N., TRONAC A. 2015. Some aspects concerning gully erosion process in small torrential watersheds and its impact on environment. Carpathian Journal of Earth and Environmental Sciences. Vol. 10. Iss. 2 p. 115–122.
  • MOŢOC M. 1984. Participarea proceselor de eroziune şi a folosințelor terenului la diferențierea transportului de aluviuni în suspensie pe râurile din România [Participation erosion processes and land use at differentiation suspended transport on the Romania rivers]. Buletinul Info. ASAS, 13. Bucureşti p. 16–28.
  • MOŢOC M., MUNTEANU S., BĂLOIU V., STĂNESCU P., MIHAI G. 1975. Eroziunea solului şi metodele de combatere [Soil erosion and methods of combating]. Editura Ceres Bucureşti pp. 303.
  • MUICĂ C., ZAVOIANU I. 1996. The ecological consequences of privatisation in Romanian agriculture. GeoJournal. Vol. 38. Iss. 2 p. 207–212.
  • MUSTAŢĂ L. 1973. Îndrumar privind desfășurarea activităţii hidrometrice pe parcele de scurgere, Institutul de Meteorologie și Hidrologie, București [Guide on hydrometric activity on runoff plots]. Bucureşti. Institutul de Meteorologie şi Hidrologie pp. 18.
  • MUSY A., HIGY C. 2010. Hydrology – a science of nature. Enfield, New Hampshire. Sci. Publ. pp. 346.
  • MUŞAT M. 2006. Studiul solurilor afectate de eroziune din zona colinară a bazinului hidrografic Slănic – Buzău în vederea stabilirii măsurilor de ameliorare şi stăvilire a procesului de eroziune [The study of soils affected by erosion in hilly on Slănic River Catchment – Buzău to establish measures to improve and crack down on the erosion process]. PhD thesis. Bucureşti. Universitatea de Ştiinţe Agronomice şi Medicină Veterinară Bucureşti, Facultatea de Agricultură pp. 220.
  • MUTCHLER C.K. 1963. Runoff plot design and installation for soil erosion studies. Washington, D.C. Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture pp. 27.
  • OriginPro 9.3. Computer software. OriginLab, 2016. Northampton, MA.
  • PETRESCU M. 1974. Stabilirea de relații între ploaie-infiltrație, scurgerea lichidă şi solidă pe suprafețe reduse de versant [Establishing relationships between rainfallinfiltration, runoff and solid discharge on reduced hillslope surface]. Studies and Research. No. 42. Bucuresti. Institutul de Meteorologie şi Hidrologie p. 119–130.
  • RADU A., MUŞAT M., PARVAN L., URZICĂ C., SEVASTEL M. 2010. Assessment, by soil survey, of condition of soil fertility and identification of its natural and human limiting factors in the Cernăteşti-Manasia Interbasinal Area, Buzău County. Annals of the University of Craiova. Agriculture, Montanology, Cadastre. Ser. Vol. 40. Iss. 1 p. 547–552.
  • RĂDOANE M. 2005. Raport de Cercetare [Research report], Grant: A 448. Revista de Politica Ştiinţei şi Scientometrie. Număr Special. ISSN 1582–1218 pp. 50.
  • STANCIU P. 2002. Mişcarea apei pe versanţi permeabili [The water movement on permeable slopes]. Bucureşti. HGA Press pp. 207.
  • SUKHANOVSKII Y.P. 2007. Modification of a rainfall simulation procedure at runoff plots for soil erosion investigation. Eurasian Soil Science. Vol. 40. Iss. 2 p. 195–202.
  • TOEBES C., OURYVAEV V. 1970. Representative and experimental basins, an international guide for research and practice. A contribution to the international hydrological decade. Parìs. United Nations Educational, Scientific and Cultural Organization pp. 348.
  • TOSSELL R.W., DICKINSON W.T., RUDRA R.P., WALL G.J. 1987. A portable rainfall simulator. Canadian Agricultural Engineering. Vol. 29 p. 155–162.
  • WAINWRIGHT J., PARSONS A.J. ABRAHAMS A.D. 2000. Plot-scale studies of vegetation, overland flow and erosion interactions: Case studies from Arizona and New Mexico. Hydrological Processes. Vol. 14 p. 2921–2943.
  • VAN DE GIESEN N.C., STOMPH T.J., AJAYI A.E., BAGAYOKO F. 2011. Scale effects in Hortonian surface runoff on agricultural slopes in West Africa: Field data and models. Agriculture, Ecosystems and Environment. Vol. 142. Iss. 1 p. 95–101.
  • VÖRÖSMARTY C.J., GUTOWSKI W.J., PERSON M., CHEN T.C., CASE D. 1993. Linked atmosphere-hydrology models at the macroscale. Macroscale Modelling of the Hydrosphere. Proceedings of the Yokohama Symposium, July 1993. IAHS Publ. No. 214 p. 3–27.
  • YU B., ROSE C.W., COUGHLAN K.J., FENTIE B. 1997. Plot-scale rainfall-runoff characteristics and modeling at six sites in Australia and Southeast Asia. Transactions of the ASAE. Vol. 40. Iss. 5 p. 1295–1303.
  • ZAHARIA L., COSTACHE R., PRĂVĂLIE R., MINEA G. 2015. Assessment and mapping of flood potential in the Slănic catchment in Romania. Journal of Earth System Science. Vol. 124. Iss. 6 p. 1311–1324.
  • ZAHARIA L., GRECU F., IOANA-TOROIMAC G., NECULAU G. 2011. Sediment transport and river channel dynamics in Romania – variability and control factors. In: Sediment transport in aquatic environments. Ed. A.J. Manning. InTech p. 293–316.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-180830e9-2811-45fa-b2d7-69dca796f44b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.