PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural optical and magnetic properties of transition metal doped ZnO magnetic nanoparticles synthesized by sol-gel auto-combustion method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Transition metals, such as chromium (Cr) and manganese (Mn) doped zinc oxide (ZnO) magnetic nanoparticles, were synthesized via sole gel auto-combustion method. The prepared magnetic (Zn1−(x+y)MnxCryO, where x, y = 0, 0.02, 0.075) nanoparticles were calcined in an oven at 6000 °C for 2 hours. The morphologies of the nanoparticles were investigated using different techniques. X-ray diffraction (XRD) analysis revealed that the hexagonal wurtzite structure of the synthesized nanoparticles was unaffected by doping concentration. The crystallite size measured by Scherrer formula was in the range of 32 nm to 38 nm at different doping concentrations. Nanosized particles with well-defined boundaries were observed using a field emission scanning electron microscopy (FE-SEM). Fourier transform infrared (FT-IR) spectra showed a wide absorption band around 1589 cm−1 in all the samples, corresponding to the stretching vibration of zinc and oxygen Zn–O bond. A blue shift in optical band gaps from 3.20 eV for ZnO to 3.08 eV for Zn0.85Mn0.75Cr0.75 O nanoparticles was observed in diffuse reflectance spectra, which was attributed to the sp-d exchange interactions. The field-dependent magnetization M-H loops were measured using vibrating sample magnetometer (VSM). The VSM results revealed diamagnetic behavior of the ZnO nanoparticles which changed into ferromagnetic, depending on the doping concentration and particle size. The compositions of Zn, Cr, Mn and O in the prepared samples were confirmed by using the energy dispersive X-ray spectroscopy (EDX). Our results provided an interesting route to improve magnetic properties of ZnO nanoparticles, which may get significant attention for the fabrication of magnetic semiconductors.
Wydawca
Rocznik
Strony
280--288
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Physics, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
autor
  • Department of Physics, University of Azad Jammu and Kashmir Muzaffarabad, AJK 13100, Pakistan
  • Department of Physics, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
  • Department of Physics, University of Azad Jammu and Kashmir Muzaffarabad, AJK 13100, Pakistan
  • Department of Chemistry, University of the Poonch, Rawalakot, Azad Kashmir, Pakistan
autor
  • Woman University of Azad Jammu and Kashmir, Bagh, Azad Kashmir
Bibliografia
  • [1] J. Lim H., Kang C.K., Kim K.K., Park L.K., Hwang D.K., Park S.J., Adv. Mater., 18 (2006), 2720.
  • [2] J. Furdyna K., J. Appl. Phys., 64 (1988), 29.
  • [3] Elilarassi R., Chandrasekaran G., Mater. Electron., 24 (2013), 96.
  • [4] Zhang J., Zhang L., Peng X., Wang X., Appl. Phys, 73 (2001), 773.
  • [5] Pan S.L., Zeng D.D., Zhang H.L., Li H.L., Appl. Phys. A, 70 (2000), 637.
  • [6] Chand P., Gaur A., Kumar A., Int. J. Chem. Nuc. Mat. Metall. Eng., 8 (2014), 12.
  • [7] Chen W., Lu Y.H., Wang M., Kroner L., Fecht H.J., J. Phys. Chem. C, 113 (2009), 1320.
  • [8] Wang P.Y., Gao Q.H., Xu J.Q., Fine Chem., 24 (2007), 436.
  • [9] Li D., Huang J.F., Cao L.Y., Jia Y.L., Yang H.B., Yao C.Y., Ceram. Int., 40 (2014), 2647.
  • [10] Yue H.Y., Fei W.D., Li Z.J., Wang L.D., J. Sol-Gel Sci. Technol., 44 (2007), 259.
  • [11] Yang Q., Hu W., Ceram. Int., 36 (2010), 989.
  • [12] Yousefi R., Kamaluddin B., Solid State Sci., 12 (2010), 252.
  • [13] Tonto P., Mekasu O., Phatanasri S., Pavarajarn V., Praserthdam P., Ceram. Int., 34 (2008), 57.
  • [14] Wang J., Shi N., Qi Y., Liu M., J. Sol-Gel Sci. Technol., 53 (2009), 101.
  • [15] Li H., Zhang Z., Huang J., Liu R., Wang Q., J. Alloy. Compd., 550 (2013), 526.
  • [16] Rajendar V., Dayakar T., Chakra C.H., Shilpa R., Venkateswara S.K., Appl. Nanomed. Nanobio., 2 (2015), 21.
  • [17] Meng A., Xing J., Li Z., Li Q., ACS Appl. Mater. Interface., 7 (2015), 27449.
  • [18] Moontragoon P., Pinitsoontorn S., Thongbai P., Microelectron. Eng., 108 (2013), 158.
  • [19] Zhong M., Li Y., Hu Y., Zhu M., Li W., Jin H., Zhao H., J. Alloy. Compd., 647 (2015), 823.
  • [20] Ahmed N., Majid A., Khan M.A., Rashid M., Umar Z.A., Baig M.A., Mater. Sci.-Poland, 36 (2018), 3.
  • [21] Cullity B.D., Elements of X-ray diffraction, Addison-Wesley, 2nd edition 1978.
  • [22] Umar Z.A., Ahmed N., Ahmed R., Arshad Anwar-Ul-Haq M., Hussain M., Baig M.A., Surf. Interface. Anal., 50 (2018), 1.
  • [23] Kumar H., Rani R., Int. Let. Chem. Phys. Ast., 14 (2013), 26.
  • [24] Ryu S.R., Jang W., Yu S.I., Lee B.H., Kwon S., Shin K., Sci. Res., 6 (2016), 181.
  • [25] Lammertink R.H., Hempenius M.A., Vancso G.J., Shin K., Rafailovich M.H., Sokolov J., Macromolecules, 34 (2001), 942.
  • [26] Saleh R., Purbo S., Prakoso A., J. Magn. Magn. Mater., 324 (2012), 665.
  • [27] Karunakaran C., Vinayagamoorthy P., Jayabharathi Electrical J., Mater. Res. Express, 1 (2014), 045019.
  • [28] Mary J.A., Vijaya J.J., Int. J. ChemTech Res., 7 (2015), 1351.
  • [29] Park T.J., Papaefthymiou G.C., Viescas A.J., A Moodenbaugh. R., Wong S.S., Nano. Let., 7 (2007), 766.
  • [30] Zeyada H.M., Youssif M.I., Ghamaz N.A., Aboderbala E.O., Physica B, 506 (2017), 75.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1800fbc8-fb63-46d7-a84f-807bc658f282
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.