PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency domain elastic wave modeling for polygonal topography using rotated average derivative diference operators

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modeling of seismic wave propagation in areas with irregular topography is an important topic in the feld of seismic exploration. As a popular numerical method for seismic modeling, the fnite diference method is nontrivial to consider the irregular free surface. There have been extensive studies on the time-domain fnite diference simulations with irregular topography; however, the frequency-domain fnite diference simulation considering irregular topography is relatively less studied. The average-derivative approach is an optimal numerical simulation scheme in the frequency domain, which can produce accurate modeling results at a relatively low computational cost. Nevertheless, this approach can only deal with the modeling problems with a fat free surface. To address this issue, we design a new frequency-domain fnite diference scheme by introducing the polygonal representation of topography into the average-derivative method. The irregular topog raphy is represented by line segments with various slopes. An extension of the conventional average-derivative diference operator in the local rotated coordinate system is used for formulating the spatial derivatives aligned with the topographic line segments. As a result, new average-derivative diference schemes are obtained for irregular topography. In this way, the average-derivative optimal method is generalized to the model with irregular topography. Numerical examples show the efectiveness of the presented method.
Czasopismo
Rocznik
Strony
1387--1409
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
Bibliografia
  • 1. Alterman Z, Karal FC (1968) Propagation of elastic waves in layered media by finite difference methods. Bull Seismol Soc Am 58:367–398
  • 2. Alterman Z, Rotenberg A (1969) Seismic waves in a quarter plane. Bull Seismol Soc Am 59:347–368
  • 3. Brossier R, Virieux J, Operto S (2008) Parsimonious finite-volume frequency-domain method for 2-D P-SV-wave modeling. Geophys J Int 175:541–559
  • 4. Chen JB, Cao J (2016) Modeling of frequency-domain elastic-wave equation with an average-derivative optimal method. Geophysics 81:339–356
  • 5. Hayashi K, Burns DR, Toksöz MN (2001) Discontinuous-grid finite-difference seismic modeling including surface topography. Bull Seismol Soc Am 91:1750–1764
  • 6. Hestholm S, Ruud B (1994) 2D finite-difference elastic wave modelling including surface topography. Geophys Prospect 42:371–390
  • 7. Hestholm S, Ruud B (1998) 3-D finite-difference elastic wave modeling including surface topography. Geophysics 63:613–622
  • 8. Hestholm S, Ruud B (2002) 3D free-boundary conditions for coordinate-transform finite-difference seismic modelling. Geophys Prospect 50:463–474
  • 9. Ilan A (1977) Finite-difference modelling for P-pulse propagation in elastic media with arbitrary polygonal surface. J Geophys 43:41–58
  • 10. Jang U, Min DJ, Choi Y, Shin C (2008) Frequency-domain elastic waveform inversion with irregular surface topography. In: 78th annual international meeting, SEG, expanded abstracts, pp 2031–2035
  • 11. Jih RS, McLaughlin KL, Der ZA (1988) Free-boundary conditions of arbitrary polygonal topography in a two-dimensional explicit elastic finite-difference scheme. Geophysics 53:1045–1055
  • 12. Kelly KR, Ward RW, Treitel S, Alford RM (1976) Synthetic seismograms: a finite-difference approach. Geophysics 41:2–27
  • 13. Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three dimensional seismic wave propagation. Geophys J Int 139:806–822
  • 14. Lan H, Zhang Z (2011) Three-dimensional wave-field simulation in heterogeneous transversely isotropic medium with irregular free surface. Bull Seismol Soc Am 101:1354–1370
  • 15. Ohminato T, Chouet BA (1997) A free-surface boundary condition for including 3D topography in the finite-difference method. Bull Seismol Soc Am 87:494–515
  • 16. Operto S, Virieux J, Amestoy P, L’Excellent JY, Giraud L (2007) 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics 72:195–211
  • 17. Pratt RG (1990) Frequency-domain elastic wave modeling by finite differences: a tool for crosshole seismic imaging. Geophysics 55:626–632
  • 18. Robertsson JOA (1996) A numerical free-surface condition for elastic/viscoelastic finite difference modeling in the presence of topography. Geophysics 61:1921–1934
  • 19. Ruud B, Hestholm S (2001) 2D surface topography boundary conditions in seismic wave modelling. Geophys Prospect 49:445–460
  • 20. Tessmer E, Kosloff D (1994) 3-D elastic modeling with surface topography by a Chebychev spectral method. Geophysics 59:464–473
  • 21. Tessmer E, Kosloff D, Behle A (1992) Elastic wave propagation simulation in the presence of surface topography. Geophys J Int 108:621–632
  • 22. Wang Y, Zhou H, Chen HM, Sheng SB, Yuan SY (2015) Acoustic reverse time migration and perfectly matched layer in boundary-conforming grids by elliptic method. J Appl Geophys 122:53–61
  • 23. Zhang W, Zhang Z, Chen X (2012) Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophys J Int 190:358–378
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-17ff7318-47dc-41a2-bde5-89b4d750c8ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.